K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

30 tháng 11 2017

Kẻ phân giác AD, BK vuông góc với AD.

\(\sin\frac{\widehat{A}}{2}=\sin BAD\)

Xét tam giác AKB vuông tại K, ta có:

\(\sin BAD=\frac{BK}{AK}\left(1\right)\)

Xét tam giác BKD vuông tại K, ta có: 

\(BK\Leftarrow BD\)thay vào (1)

\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)

Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)

\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)

\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)

\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)

19 tháng 1 2021

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKABsinA=BKAB ; sinB=AHABsinB=AHAB ; sinC=AHACsinC=AHAC

ABsinC=ABAHAC=AB.ACAH⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAHACsinB=ACAHAB=AB.ACAH

csinC=bsinB⇒csinC=bsinB (1)

Lại có : BK=sinC.BCBCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinCBK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

asinA=csinC⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinCasinA=bsinB=csinC (Đpcm)

5 tháng 6 2018

Kẽ đường cao AH

\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)

\(\Rightarrow AH=c.sinB=b.sinC\)

\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)

Tương tự ta cũng có

\(\frac{b}{sinB}=\frac{a}{sinA}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)