K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

a ) Do AM là trung tuyến => BM = CM

Xét \(\Delta ABM\)và \(\Delta DCM\)có :

BM = CM ( cm trên )

\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)

MA = MD ( gt )

nên \(\Delta ABM=\Delta DCM\)( c.g.c )

=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )

mà hai góc này lại ở vị trí so le trong => AB//CD

14 tháng 6 2019

A B C D M K Q N I

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

7 tháng 1 2021

undefined 

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

AM = DM (gt)

BM = CM (M là trung điểm BC)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\) (c-g-c)

b) Do \(\Delta ABM=\Delta DCM\) (cmt)

\(\Rightarrow AB=CD\) (hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng)

\(\Rightarrow\widehat{ABC}=\widehat{DCB}\)

Xét \(\Delta ABC\)\(\Delta DCB\) có:

AB = CD (cmt)

\(\widehat{ABC}=\widehat{DCB}\) (cmt)

BC là cạnh chung

\(\Rightarrow\Delta ABC=\Delta DCB\) (c-g-c)

\(\Rightarrow\widehat{BAC}=\widehat{BDC}\) (hai góc tương ứng)

\(\widehat{BAC}=90^0\)

\(\Rightarrow\widehat{BDC}=90^0\)

Hay \(DB\perp DC\)

8 tháng 1 2021

cam ơn nhé

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC

26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

b: Ta có: AB//CE

AB\(\perp\)AC

Do đó: CE\(\perp\)CA

=>ΔCAE vuông tại C

c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có

CA chung

AB=CE

Do đó: ΔABC=ΔCEA

d: ta có: ΔABC=ΔCEA

=>BC=EA

mà \(AM=\dfrac{1}{2}EA\)

nên \(AM=\dfrac{1}{2}BC\)

e: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

f: Xét ΔMHC và ΔMKB có

MB=MC

\(\widehat{MBK}=\widehat{MCH}\)

BK=CH

Do đó: ΔMHC=ΔMKB

=>\(\widehat{HMC}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)

nên \(\widehat{HMC}+\widehat{KMC}=180^0\)

=>K,M,H thẳng hàng

25 tháng 12 2023

a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều. 

Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.

 

b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ. 

Vì AB // EC, nên góc BAC = góc ECA. 

Vậy tam giác ACE cũng là tam giác vuông tại C.

 

c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A). 

Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.

 

d) Ta đã biết M là trung điểm của BC, vậy BM = MC. 

Vì MA = ME, nên MA = MC/2. 

Do đó, AM = 1/2 BC.

 

e) Ta đã biết AB = EC và AB // EC. 

Vì MA = ME, nên MA = MC. 

Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng. 

Vậy AC = BE và AC // BC.

 

f) Trên BE lấy K, trên AC lấy H sao cho BK = CH. 

Vì M là trung điểm của BC, nên MK = MC/2. 

Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ. 

Vậy góc MCK = 60 độ. 

Vì BK = CH, nên góc BKC = góc CHB. 

Vậy góc BKC = góc CHB = 60 độ. 

Vậy tam giác BKC và tam giác CHB là hai tam giác đều. 

Vậy 3 điểm K, M, H thẳng hàng.

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

=>AC vuông góc DC

c: Xét ΔABC có

M là trung điểm của CB

MN//AB

=>N là trung điểm của AC

Xét ΔCAB có

AM,BN là trung tuyến

AM cắt BN tại G

=>G là trọng tâm

=>AM=3/2AG

=>AD=3AG