Phân tích đa thức sau thành nhân tử ;
a, (x2 + x + 1) . (x2 + x + 2) - 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21) \(=ab\left(x-5\right)+a^2\left(x-5\right)=a\left(x-5\right)\left(a+b\right)\)
22) \(=2a^2\left(x-y\right)+4a\left(x-y\right)=2a\left(x-y\right)\left(a+2\right)\)
23) \(a\left(x-3\right)+a^2\left(x-3\right)=a\left(x-3\right)\left(a+1\right)\)
24) \(=5x^2y\left(x-7\right)+5xy\left(x-7\right)=5xy\left(x-y\right)\left(x+1\right)\)
25) \(=2xy\left(a-1\right)+4x^2y\left(a-1\right)=2xy\left(a-1\right)\left(2x+1\right)\)
26) \(=4a\left(x-3\right)+2\left(x-3\right)=2\left(x-3\right)\left(2a+1\right)\)
27) \(=x^m\left(x-1\right)\)
28) \(=x^m\left(x+1\right)\)
29) \(=x^m\left(x^2-1\right)\)
30) \(=x^{m+1}\left(x-1\right)\)
29) \(=x^6\left(x^4-4x^2+4\right)=x^6\left(x^2-2\right)^2\)
30) \(=\left(2x^2\right)^3-\left(3y\right)^3=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
31) \(=\left(a+b-c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)\)
32) \(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
33) \(=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
34) \(=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
35) \(=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
36) \(=-\left(m^3-9m^2+27m-27\right)=-\left(m-3\right)^3\)
37) \(=\left(5-x-2\right)\left(25+5x+10+x^2+4x+4\right)=\left(3-x\right)\left(x^2+9x+39\right)\)
a: \(=-3x\left(y-2\right)^3+\left(y-2\right)^4\)
\(=\left(y-2\right)^3\left(-3x+y-2\right)\)
=(x^2+x)^2+3(x^2+x)+2-12
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x+2)*(x-1)(x^2+x+5)
Đặt x^2 + x+ 1 = a => x^2 + x + 2 =a + 1
Thay vòa ta có :
a( a+ 1 ) - 12 = a^2 + a - 12 = a^2 + 4a - 3a - 12
=a (a+4) - 3 ( a+ 4 )
= ( a- 3 )(a+4)
Thây x^2 + x + 1 = a vào ta có
(x^2 + x + 1 - 3 )(x^2 + x + 1 + 4 )
= ( x^2 + x - 2 )( x^ 2 + x + 5 )
đặt t=x2+x+1 ta được:
t.(t+1)-12
=t2-t-12
=t2+3x-4t-12
=t.(t+3)-4.(t+3)
=(t+3)(t-4)
thay t=x2+x+1 ta được:
(x2+x+4)(x2+x-3)
vậy (x2 + x + 1) . (x2 + x + 2) - 12=(x2+x+4)(x2+x-3)