tìm x:
a) 3^x=27
b.2^x:2^3=1
c.27<3^x<243
d.4^x-^3=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
a.\(\dfrac{1}{3}\) + x = \(\dfrac{5}{6}\)
x = \(\dfrac{5}{6}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{1}{2}\)
b. | x-1| - \(\dfrac{2}{5}\) = \(\dfrac{11}{10}\)
| x-1| = \(\dfrac{11}{10}\) + \(\dfrac{2}{5}\)
|x-1| = \(\dfrac{3}{2}\)
\(\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}+1\\x=-\dfrac{3}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c, \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = 1
\(\dfrac{2}{3}\) (\(\dfrac{x}{2}\) + 3) = 1 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = \(\dfrac{2}{3}\)
\(\dfrac{x}{2}\) + 3 = 1
\(\dfrac{x}{2}\) = 1 - 3
\(\dfrac{x}{2}\) = -2
\(x\) = -4
d, \(\dfrac{x+2}{3}\) = \(\dfrac{27}{x+2}\)
(x+2)2 = 27.3
(x+2) =92
\(\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a) (3x-15)7 = 0
3x-15 = 0
3x = 0+15
3x = 15
x = 15:3
x = 5
b) 42x-6 = 1
2x-6 = 0
2x = 0+6
2x = 6
x = 6:2
x = 3
c) Tớ ko bít
d) (x - 6)3 = (x - 6)2
Th1:
x - 6 = 1
x = 1 + 6
x = 7
Th2:
x - 6 = 0
x = 6
Vậy x = 7
x = 6
--thodagbun--
a, (3x-15)^7=0 <=> 3x-15=0 <=> x=5
b, 42x+6=1 <=> 16x=-5 <=>x=-5/16
c, \(\dfrac{\left(3-x\right)^{10x}}{\left(3-x\right)^{20}}=1\Leftrightarrow\left(3-x\right)^{10x-20}=1\)
TH1: 10x-20 = 0 <=> x=2
TH2: 3-x=1 <=> x=2
Vậy x=2
d, (x-6)^3 = (x-6)^2
<=> (x-6)^2.[(x-6)-1]=0
<=> (x-6)^2=0 hoặc (x-6)-1=0
<=> x=6 hoặc x=7
a: \(\Leftrightarrow x^2-2x-8-x^2=36\)
=>-2x=44
hay x=-22
b: \(\Leftrightarrow4x^2+x-8x-2-4x^2-27x=1\)
=>-34x=3
hay x=-3/34
c: =>(x-10)(x-1)=0
=>x=10 hoặc x=1
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27.\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-27=0.\)
\(\Leftrightarrow x^3-x^3+4x^2-4x=0.\)
\(\Leftrightarrow4x\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0.\\x-1=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=1.\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}.\)
a) x + \(\dfrac{3}{4}\) = \(\dfrac{5}{3}\)
x = \(\dfrac{5}{3}\) - \(\dfrac{3}{4}\)
x = \(\dfrac{20}{12}\) - \(\dfrac{9}{12}\)
x = \(\dfrac{11}{12}\)
b) x - \(\dfrac{2}{3}\) = \(\dfrac{7}{2}\)
x = \(\dfrac{7}{2}\) + \(\dfrac{2}{3}\)
x = \(\dfrac{21}{6}\) + \(\dfrac{4}{6}\)
x = \(\dfrac{25}{6}\)
a) 3^x=27
3x=33
x=3
b.2^x:2^3=1
2x:8=1
2x=1x8
2x=8
2x=23
x=3
c.27<3^x<243
33=27(loại)
34=81 (lấy)
35=243(loại)
vậy x=4
d.4^x-^3=36