8,00 \(\in\) N
8,00 \(\notin\) N
8,00 \(\in\) R
8,00 \(\notin\) R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt 3 \in \mathbb{Q}\) sai.
Sửa lại: \(\sqrt 3 \notin \mathbb{Q}\)
b) \(\sqrt 3 \in \mathbb{R}\) đúng.
c) \(\frac{2}{3} \notin \mathbb{R}\) sai.
Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)
d) \( - 9 \in \mathbb{R}\) đúng.
a) Đúng vì 1 số nguyên cũng là số thực
b) Đúng vì 1 số hữu tỉ cũng là số thực
c) Sai vì 1 số thực có thể không là số nguyên. Chẳng hạn, số \(0,2 \in R\) nhưng \(0,2 \notin Z\)
d) Sai vì 1 số thực có thể là số hữu tỉ hoặc không là số hữu tỉ. Chẳng hạn \(0,2 \in R\) và \(0,2 \in Q\)
a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)
b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)
c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)
a) Hiển nhiên: C, D là các tập con của \(\mathbb{R}\).
Vậy mệnh đề này đúng.
b) Mệnh đề “\(\forall x,\;x \in C \Rightarrow x \in D\)” sai. Vì \(3 \in C\) nhưng \(3 \notin D\);
c) Mệnh đề “\(3 \in C\) nhưng \(3 \notin D\)” đúng;
d) Mệnh đề “\(C = D\)” sai vì \(3 \in C\) nhưng \(3 \notin D\).
\(\begin{array}{l} - 7 \notin \mathbb{N};\,\,\,\,\,\,\, - 17 \in \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\, - 38 \in Q\\\frac{4}{5} \notin \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\,\frac{4}{5} \in \mathbb{Q};\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,25 \notin \mathbb{Z};\,\,\,\,\,3,25 \in Q\end{array}\)
\(-7\notin N;-17\in Z;-38\in Q;\dfrac{4}{5}\notin Q\)
\(\dfrac{4}{5}\in Q;0,25\notin Z;3,25\in Q\)
Ta có tập hợp B = {31; 33; 35;….}
+) Vì 31 là số tự nhiên lẻ và thỏa mãn lớn hơn 30 nên 31 thuộc A.
+) Vì 32 là một số chẵn nên 32 không thuộc B.
+) 2 002 là một số chẵn nên 2 002 không thuộc B.
+) 2 003 là số tự nhiên lẻ và thỏa mãn lớn hơn 30 nên 2003 thuộc B.
Vậy: Các khẳng định đúng là: a, c
Các khẳng định sai là: b, d.