K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

\(B=\sqrt{x^2+8x+14}+\sqrt{9-x^2}\)

ĐKXĐ :

\(\hept{\begin{cases}x^2+8x+14\ge0\\9-x^2\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-4-\sqrt{2}\\x\le3\end{cases}}\)

\(\Leftrightarrow-4-\sqrt{2}\le x\le3\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) Thay x=0 vào A, ta được:

\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)

\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)

\(=\dfrac{11}{3}-2-1\)

\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)

22 tháng 3 2021

Thank

10 tháng 7 2019

Điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(8x-x^2-15\ge0\)

\(\Leftrightarrow\left(-x^2+3x\right)+\left(5x-15\right)\ge0\)

\(\Leftrightarrow-x\left(x-3\right)+5\left(x-3\right)\ge0\)

\(\Leftrightarrow\left(-x+5\right)\left(x-3\right)\ge0\)

Đặt f(x)= \(\left(-x+5\right)\left(x-3\right)\)

f(x)=0 \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

Ta có bảng xét dấu:

x                                                         3                                                       5    

x-3                       -                              0                          +                            |                            +

-x+5                     -                              |                            -                           0                            +

f(x)                       +                              0                          -                            0                            +

Để f(x) \(\ge0\Leftrightarrow\)\(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)

Vậy điều kiện xác định \(\sqrt{8x-x^2-15}\)là \(\orbr{\begin{cases}x\le3\\x\ge5\end{cases}}\)

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

7 tháng 11 2021

Để biểu thức \(\sqrt{2-3x}\) được XĐ ⇒ \(2-3x\) ≥ 0

                                                    ⇔ \(-3x\) ≥ -2

                                                    ⇔ \(x\) ≤ \(\dfrac{2}{3}\)

Vậy x ≤ \(\dfrac{2}{3}\) thì bt \(\sqrt{2-3x}\) được xác định

NV
11 tháng 8 2021

ĐKXĐ:
\(x-2>0\Rightarrow x>2\)

ĐKXĐ: x>2

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

a. ĐKXĐ: 

\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)

b. ĐKXĐ:

\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

 

15 tháng 8 2023

đkxđ: 

\(x^2-4x+3\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

Vậy đkxđ của biểu thức là \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

15 tháng 8 2023

đkxđ: 

�2−4�+3≥0x24x+30

⇔(�−1)(�−3)≥0(x1)(x3)0

⇔[{�−1≥0�−3≥0{�−1≤0�−3≤0{x10x30{x10x30

⇔[�≥3�≤1[x3x1

Vậy đkxđ của biểu thức là [�≥3�≤1[x3x1