K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

Để giải phương trình xy + 2x - y = 9, ta có thể sử dụng phương pháp hoán vị.

 

Đặt u = x - 1 và v = y + 2, ta có:

 

(u + 1)(v - 2) + 2(u + 1) - (v - 2) = 9

 

Mở ngoặc và đơn giản hóa, ta được:

 

uv + u + 2v - 4 + 2u + 2 - v + 2 = 9

 

Kết hợp các thành phần tương tự, ta có:

 

uv + 3u + v = 9

 

Thêm 3 cả hai vế của phương trình, ta có:

 

uv + 3u + v + 3 = 12

 

Nhân cả hai vế của phương trình với 4, ta có:

 

4uv + 12u + 4v + 12 = 48

 

Nhóm các thành phần tương tự, ta có:

 

(4u + 1)(v + 3) = 48

 

Ta cần tìm các cặp giá trị nguyên dương (u, v) sao cho (4u + 1)(v + 3) = 48.

 

Các cặp giá trị nguyên dương (u, v) thỏa mãn phương trình trên là:

 

(1, 45), (3, 15), (5, 9), (9, 5), (15, 3), (45, 1)

 

Quay lại định nghĩa của u và v, ta có:

 

x - 1 = u → x = u + 1

y + 2 = v → y = v - 2

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(2, 43), (4, 13), (6, 7), (10, 3), (16, 1), (46, -1)

 

Tuy nhiên, để thỏa mãn y ∈ N, ta chỉ lấy các giá trị y là số tự nhiên dương.

 

Vậy, các cặp giá trị nguyên dương (x, y) thỏa mãn phương trình ban đầu là:

 

(6, 7), (10, 3)

xy+2x-y=9

=>x(y+2)-y-2=7

=>x(y+2)-(y+2)=7

=>(x-1)(y+2)=7

\(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)

mà x,y đều là số tự nhiên

nên \(\left(x,y\right)\in\left(2;5\right)\)

21 tháng 1 2023

xy+x+y=4

(x+1)y+x=4

(x+1)y+x-4=0

=>x+1=0

=>x=-1

=>y+1=0

=>y=-1

@Taoyewmay

=>x(y+1)+y+1=5

=>(x+1)(y+1)=5

=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

12 tháng 11 2019

Đáp án C.

Ta có: GT

<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.

X é t   h à m   s ố   f t = 5 t + t - 3 - t

⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên  ℝ suy ra

f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1

⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .

Do x > 0 => y > 1.

Ta có:

T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .

23 tháng 12 2023

\(\Leftrightarrow2xy+2x-y-1=6\)

\(\Leftrightarrow y\left(2x-1\right)=-2x+7=-\left(2x-7\right)\)

\(\Leftrightarrow y=\dfrac{-\left(2x-7\right)}{2x-1}=\dfrac{-\left(2x-1\right)+6}{2x-1}=-1+\dfrac{6}{2x-1}\) (1)

Để y nguyên \(\Rightarrow6⋮\left(2x-1\right)\Rightarrow\left(2x-1\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x=\left\{-\dfrac{5}{2};-1;-\dfrac{1}{2};0;1;\dfrac{3}{2};2;\dfrac{5}{2}\right\}\) Do x nguyên

\(\Rightarrow x=\left\{-1;0;1;2\right\}\) Thay lần lượt các giá trị của x vào (1) để tìm các giá trị tương ứng của y

 

17 tháng 3 2017

ta có (2x+1).(2-y)=6

=> (2x+1).(2-y)=1.6=6.1=(-1)(-6)=(-6)(-1)

trường hợp 1: 2x+1=1;2-y=6

=>x=0;y=-4

th2: 2x+1=6;2-y=1

=> x=5/2;y=1 (loại)

th3:2x+1=-1;2-y=-6

=> x=-1;y=8

th4: 2x+1=-6;2-y=-1

=> x=-7/2:y=3 (loại)

vậy...

17 tháng 3 2017

Vì x,y là số nguyên nên 2x+1 và 2-y thuộc Ư 6={-6;-3;-2;-1;1;2;3;6}

Ta có bảng sau

2x+1-6-3-2-11236
2x-7-4-3-20125
xloại-2loại-10loại1loại
2-y-1-2-3-66321
y3458-4-101

Vậy cặp số (x,y) là (-2;4);(-1;8);(0;-4);(1;0)

19 tháng 2 2020

( y-4) ( 1+ 2x) =6

=> 1+2x \(\in\)Ư(6)={ 1;2;3; 6; -1; -2; -3; -6}

Vì 1+2x là số lẻ nên 1+2x\(\in\){ 1; 3; -1;-3}

=> 2x\(\in\){ 0; 2; -2; -4}

=> x \(\in\){ 0; 1; -1; -2}

Sau bn tự thay nha