Ai giúp em giải bài toán này với:
Tìm x:
1/(1*3)+1/(3*5)+1/(5*7)+....+1/(x*(x+2)) = 20/41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left[\frac{1}{14}+\frac{1}{7}-\left(-\frac{3}{35}\right)\right].\frac{4}{3}}=\frac{\left(\frac{18}{60}-\frac{16}{60}-\frac{21}{60}\right).\frac{5}{19}}{\left(\frac{5}{70}+\frac{10}{70}+\frac{6}{70}\right).\frac{4}{3}}=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{4}{3}}=\frac{\frac{-1}{12}}{\frac{14}{35}}=-\frac{1}{12}.\frac{35}{14}=\frac{-35}{168}\)
*\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{63}{10}.12-21.\frac{18}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{378}{5}-\frac{378}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
Ta có :
\(\frac{x+3}{y+5}=\frac{3}{5}\)\(\Leftrightarrow\)\(\frac{x+3}{3}=\frac{y+5}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+3+y+5}{3+5}=\frac{\left(x+y\right)+\left(3+5\right)}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
Do đó :
\(\frac{x+3}{3}=3\)\(\Rightarrow\)\(x=3.3-3=9-3=6\)
\(\frac{y+5}{5}=3\)\(\Rightarrow\)\(y=3.5-5=10\)
Vậy \(x=6\) và \(y=10\)
Chúc bạn học tốt ~
lp 6 thì dãy tỉ số = nhau cái gì :))
\(\frac{x+3}{y+5}=\frac{3}{5}\)
\(\Rightarrow\left(x+3\right)\cdot5=\left(y+5\right)\cdot3\)
\(\Rightarrow5x+15=3y+15\)
\(\Rightarrow5x=3y\)
\(\Rightarrow\frac{x}{y}=\frac{3}{5}\) ; mà x+y = 16
\(\Rightarrow\hept{\begin{cases}x=16:\left(3+5\right)\cdot3=6\\y=16:\left(3+5\right)\cdot5=10\end{cases}}\)
( 3x + 1 ) ( 5 - 2x ) > 0
---> 3x + 1 và 5 - 2x cùng dấu
+, \(\hept{\begin{cases}3x+1>0\\5-2x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\\frac{5}{2}>x\end{cases}}\Leftrightarrow\frac{5}{2}>x>\frac{-1}{3}\)
+, \(\hept{\begin{cases}3x+1< 0\\5-2x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{3}\\\frac{5}{2}< x\end{cases}}\Leftrightarrow\frac{5}{2}< x< \frac{-1}{3}\)VÔ LÝ
xin tiick
=>x2.(-1-3-5-7)\(\le\)0
=>x2-16 \(\le\)0
mà x2>0 <=> 16 >0
=>x2=16
x=\(\sqrt{16}=4\)
bạn ơi đây là: (x2-1)*(x2-3)*(x2-5)*(x2-7) bé hơn hoặc bằng 0
a) -12.(x - 5) + 7(3 - x) = 5
=> -12x + 60 + 21 - 7x = 5
=> -19x + 81 = 5
=> -19x = 5 - 81
=> -19x = -76
=> x = -76 : (-19)
=> x = 4
b) (x + 1) + (x + 2) + (x + 3) + ... + (x + 20) = 250
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 20) = 250
=> 20x + 210 = 250
=> 20x = 250 - 210
=> 20x = 40
= > x = 40 : 20
=> x = 2
\(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(\Leftrightarrow-12x+60+21-7x=5\)
\(\Leftrightarrow-19x+81=5\)
\(\Leftrightarrow81-5=19x\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=4\)
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\cdot\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\cdot\left(x+2\right)}\right)=\frac{20}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
\(\Rightarrow x+2=41\Rightarrow x=39\)