Tìm giá trị nhỏ nhất của biểu thức:
A= x^2-x
Các bạn giúp tớ với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(2-x^2\right)\)
\(=x^2.2-\left(x^2\right)^2\)
\(=2x^2-\left(x^2\right)^2\)
\(=-x^4+2x^2\)
=> BT ko có GTLN/GTNN
\(A=3x^2+6x+15=3\left(x^2+2x+1\right)+12\)
\(=3\left(x+1\right)^2+12\ge12\)
\(minA=12\Leftrightarrow x=-1\)
Ta có :
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)
\(=1-\frac{2}{x^2+1}\)
Mà \(A_{min}\Rightarrow\frac{2}{x^2+1}_{max};x^2+1\in N^∗\)
\(\Rightarrow x^2+1_{min}\Rightarrow x^2+1=1\)
\(\Rightarrow x^2=0\Rightarrow x=0\)
Vậy \(A_{min}=\frac{-1}{1}=-1\forall x=0\)
Không chắc nha, em mới lớp 6 :3
\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)
\(\text{Biểu thức }A\text{ nhận giá trị nhỏ nhất khi : }x^2+1\text{ nhận giá trị bé nhất}\)
\(\Rightarrow\text{ }x^2\text{ nhận giá trị bé nhất }\) \(\Rightarrow\text{ }x^2=1\)
\(\text{Vậy ta có : }\)
\(A=1-\frac{2}{x^2+1}=1-\frac{2}{1+1}=1-\frac{2}{2}=1-1=0\)
\(\text{Vậy giá trị nhỏ nhất của biểu thức }A\text{ là }1\)
\(B=2\left(x^2+4x+4\right)+1=2\left(x+2\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=-2\)
\(C=4x^2y^2+12xy+9+6=\left(2xy+3\right)^2+6\ge6\)
\(C_{min}=6\) khi \(xy=-\dfrac{3}{2}\)
Ta có: \(B=2x^2+8x+9\)
\(=2\left(x^2+4x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{1}{2}\right)\)
\(=2\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
Vậy: \(B_{min}=1\) khi x=-2
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
A= x^2-x
A= (x-1/2)^2-1/4
ta thấy (x-1/2)^2\(\ge\)0
=>(x-1/2)^2-1/4\(\ge\)-1/4
hay A\(\ge\)-1/4
vậy \(A_{min}\)=-1/4<=>x=1/2