√(15 + 5 √(5)) - √(3 - √(5))
giải giúp mình bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}=\dfrac{5\sqrt{3}}{\sqrt{15}}+\dfrac{3\sqrt{5}}{\sqrt{15}}=\dfrac{5\sqrt{3}}{\sqrt{5}.\sqrt{3}}+\dfrac{3\sqrt{5}}{\sqrt{3}.\sqrt{5}}=\sqrt{5}+\sqrt{3}\)
\(\dfrac{2}{67}-\left(\dfrac{3}{7}+\dfrac{2}{67}\right)\\ =\dfrac{2}{67}-\dfrac{215}{469}\\ =\dfrac{-3}{7}\)
Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) ta có:
\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{4-5}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3A\)
Giải PT:
\(A^3+3A-4=0\Leftrightarrow A^3-1+3A-3=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+3\left(A-1\right)=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}A-1=0\\A^2+A+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\A^2+2.\frac{1}{2}A+\frac{1}{4}-\frac{1}{4}+4=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2+\frac{15}{4}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2=-\frac{15}{4}\left(L\right)\end{cases}}}\)
Vậy \(A=1\)
\(\frac{3}{5}.\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right).\frac{3}{5}\)
\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right)\text{]}\)
\(=\frac{3}{5}.\text{[}\frac{5}{3}-\frac{2}{7}-\frac{7}{3}+\frac{3}{7}\text{]}\)
\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{7}{3}\right)-\left(\frac{2}{7}-\frac{3}{7}\right)\text{]}\)
\(=\frac{3}{5}.\text{[}\frac{-2}{3}-\frac{-1}{7}\text{]}\)
\(=\frac{3}{5}.\left(\frac{-2}{3}+\frac{1}{7}\right)\)
\(=\frac{3}{5}.\left(\frac{-14}{21}+\frac{3}{21}\right)\)
\(=\frac{3}{5}.\frac{-11}{21}\)
\(=\frac{3.\left(-11\right)}{5.21}\)
\(=\frac{-11}{5.7}=\frac{-11}{35}\)
Chúc bạn học tốt
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)
c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)
d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)
31−43−(−53)+721−92−361+151
=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=31−43+53+721−92−361+151
=\left(\frac{1}{3}-\frac{2}{9}\right)+\left(-\frac{3}{4}-\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{72}=(31−92)+(−43−361)+(53+151)+721
=\left(\frac{3}{9}-\frac{2}{9}\right)+\left(-\frac{27}{36}-\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{72}=(93−92)+(−3627−361)+(159+151)+721
=\frac{1}{9}+\frac{-7}{9}+\frac{2}{3}+\frac{1}{72}=91+9−7+32+721
=-\frac{2}{3}+\frac{2}{3}+\frac{1}{72}=−32+32+721
=0+\frac{1}{72}=\frac{1}{72}=0+721=721
SO SO HANG CUA DAY SO LA
(5005-5):5+1=1001(SO HANG )
TONG CUA DAY SO LA
(5005+5)*1001:2=2507505
5+10+15+20+25+...+5000+5005=(5+5005)+(10+5000)+...+(2500+2510)+2505
=5010 + 5010 + ....+ 5010 + 2505
=5010 x 500 + 2505
= 2507505
\(\sqrt{15+5\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{5}\sqrt{3+\sqrt{5}}-\sqrt{\dfrac{6-2\sqrt{5}}{2}}\)
\(=\sqrt{5}\sqrt{\dfrac{6+2\sqrt{5}}{2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2}}=\sqrt{5}\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{2}}-\dfrac{\left|\sqrt{5}-1\right|}{\sqrt{2}}\)
\(=\sqrt{5}.\dfrac{\left|\sqrt{5}+1\right|}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{5}.\dfrac{\sqrt{5}+1}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{\sqrt{2}}\)
\(=\dfrac{5+\sqrt{5}-\sqrt{5}+1}{\sqrt{2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)