\(\text{Tính }B=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+....}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{1}=1\)
b,c
\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)
=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)
\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
https://olm.vn/hoi-dap/detail/7291365157.html
tham khảo! bài này mk làm ở đó hơi thieuus bạn chỉ cần + ... là đc
ĐKXĐ: \(5\le x\le13\)
Đặt \(\sqrt{x-5}=t\ge0\Rightarrow x=t^2+5\)
Phương trình trở thành:
\(\sqrt{2+t}=\sqrt{13-\left(t^2+5\right)}\)
\(\Leftrightarrow\sqrt{t+2}=\sqrt{8-t^2}\)
\(\Leftrightarrow t+2=8-t^2\)
\(\Leftrightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-5}=2\)
\(\Rightarrow x=9\)
Gọi A= \(\sqrt{5-\sqrt{13+2\sqrt{11}}}\) - \(\sqrt{5+\sqrt{13+2\sqrt{11}}}\)
Lấy A bình phương rồi áp dụng hằng đẳng thức số 2 sẽ ra:
A^2 = \(10-\) \(2\sqrt{25-\left(13+2\sqrt{11}\right)}\)
= \(10-2\sqrt{11-2\sqrt{11}+1}\)
= \(10-2\sqrt{\left(\sqrt{11}-1\right)^2}\)
= \(12-2\sqrt{11}\)
=\(11-2\sqrt{11}+1\)
= \(\left(\sqrt{11}-1\right)^2\)
Suy ra A= \(\sqrt{11}-1\)
\(a=\sqrt{5-\sqrt{13+2\sqrt{11}}}\); \(b=\sqrt{5+\sqrt{13+2\sqrt{11}}}\)dễ thấy \(a< b\)
ta có \(a^2+b^2=10;a.b=\left(\sqrt{11}-1\right)^{ }\).
Từ đây ta có \(\left(a-b\right)^2=\left(\sqrt{11}-1\right)^2\)kết hợp với a<b => a-b=1-\(\sqrt{11}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
a) Ta có: \(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) Ta có: \(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{2}+2\sqrt{2}+1}\)
\(=\sqrt{14+32\sqrt{2}}\)
c) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)
\(=\sqrt{6+2\sqrt{5}-2\sqrt{3}-1}\)
\(=\sqrt{5+2\sqrt{5}-2\sqrt{3}}\)
Ta có:
\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)
\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)
\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow B^2=5+\sqrt{13+B}\Rightarrow\left(B^2-5\right)^2=13+B\)
\(\Leftrightarrow B^4-10B^2-B+12=0\)
\(\Leftrightarrow\left(B-3\right)\left(B^3+3B^2-B-4\right)=0\)
\(\Leftrightarrow B=3\text{ hoặc }B^3+3B^2-B-4=0\text{ (1)}\)
Lấy máy tính thấy (1) có 2 nghiệm âm và một nghiệm B = 1,11....
Mà \(B>\sqrt{5}>2>0\) nên loại hết các nghiệm của (1) :))
Vậy B = 3.
\(\Rightarrow B^2=5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}\left(B>\sqrt{4}=2\right)\)
\(B^4=25+13+\sqrt{5+\sqrt{13+...}}+2.5.\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(B^4=38+B+10\left(B^2-5\right)\)
\(B^4=10B^2-50+B+38=10B^2+B-12\)
\(\Rightarrow B^4-10B^2-B+12=0\)
\(\Leftrightarrow\left(B-3\right)\left(B^3+3B^2-B-4\right)=0\)
\(\Leftrightarrow\left(B-3\right)\left[B^2\left(B+3\right)-\left(B+3\right)-1\right]=0\)
\(\Leftrightarrow\left(B-3\right)\left[\left(B+3\right)\left(B-1\right)\left(B+1\right)-1\right]=0\left(1\right)\)
Vì B > 2 =>\(\left[\left(B+3\right)\left(B-1\right)\left(B+1\right)-1\right]>0\)
Do đó, (1) => B - 3 = 0 => B = 3 (TMĐK)