K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

3-1 x 3n + 5 x 3n-1 = 162

=> 3n-1 + 5 x 3n-1 = 162

=> ( 5 + 1 ) x 3n-1 = 162

=> 6 x 3n-1 = 162

=> 3n-1 = 162 : 6 = 27

=> 3n-1 = 33

=> n - 1 = 3

=> n = 4

Vậy ...................

3−1.3n+5.3n−1=1623−1.3n+5.3n−1=162

⇒3n−1+5.3n−1=162⇒3n−1+5.3n−1=162

⇒3n−1(1+5)=162⇒3n−1(1+5)=162

⇒3n−1.6=162⇒3n−1.6=162

⇒3n−1=162:6=27⇒3n−1=162:6=27

⇒3n−1=33⇒3n−1=33

⇒n−1=3⇒n−1=3

⇒n=4

k nha 

Gạch :D

4 tháng 5 2017

3x+2\(\sqrt{162+n}\)+5(n+3)=0

ĐKXĐ: n \(\ge\) -162

<=>3x=-2\(\sqrt{162+n}\)-5(n+3)

x<-3n-9

=>3x<-9n-27

=>-9n-27>-2\(\sqrt{162+n}\)-5(n+3)

<=>9n+27>2\(\sqrt{162+n}\)+5(n+3)

<=>4n+12>2\(\sqrt{162+n}\)

<=>2n+6>\(\sqrt{162+n}\)

ĐK có nghiệm: n\(\ge\)-3

<=>4n2+24n+36>162+n

<=>4n2+23n-126>0

<=>\(\dfrac{-23+\sqrt{2545}}{8}< n\)hoặc n<\(\dfrac{-23-\sqrt{2545}}{8}\)

Vậy...

26 tháng 10 2017

x o dau??????????????????????????????????????????????????????????????????????????????????????????????????????????

26 tháng 10 2017

thiều đề

11 tháng 2 2017

Bài 2 : 

Ta có : n - 6 chia hết n - 1

=> n - 1 - 5 chia hết cho n - 1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5) = {-1;1-5;5}

Ta có bảng 

n - 1-5-115
n-4026

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

12 tháng 2 2022

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

NV
12 tháng 2 2022

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

17 tháng 9 2020

Bài 1.

a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )

= 2x2 + 3( x2 - 1 ) - 5x2 - 5x

= 2x2 + 3x2 - 3 - 5x2 - 5x

= -5x - 3 

b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )

= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )

= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6

= 10x - 4

Bài 2.

a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0

<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0

<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0

<=> x2 - 6x = 0

<=> x( x - 6 ) = 0

<=> x = 0 hoặc x = 6

b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0

<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0

<=> x2 + 5x + 6 - x2 - 3x + 10 = 0

<=> 2x + 16 = 0

<=> 2x = -16

<=> x = -8

Bài 3.

A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2

= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2

= 5n2 + 5n

= 5n( n + 1 ) chia hết cho 5 ( đpcm )

B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )

= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )

= 6n2 + 31n + 5 - 6n2 - 7n + 5

= 24n + 10

= 2( 12n + 5 ) chia hết cho 2 ( đpcm )

17 tháng 9 2020

bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=-3-5x\)

b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)

\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)

\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)

\(=10x-4\)

\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)

\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)

\(x^2-6x=0\)

\(x\left(x-6\right)=0\)

\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)