(a+b+c)^2+(a+b-c)^2+(2a-b)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a/b=c/d
chứng minh :
2a/a+b=2c/c+a
a-b/2a+b=c-d/2c-d
a/a^2+b^2=c/c^2+d^2
a+b/a^2-b^2=c+d/c^2-d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)
\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)
Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)
b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)
\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)
Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)
c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)
hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)
a ) \(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=4a^2+4ab+b^2-\left(4a^2-b^2\right)-2ab+2a^2\)
\(=4a^2+4ab+b^2-4a^2+b^2-2ab+2a^2\)
\(=2a^2+2ab+2b^2\)
\(=\left(a^2+2ab+b^2\right)+a^2+b^2\)
\(=\left(a+b\right)^2+a^2+b^2\)
b ) \(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left[\left(a+b\right)^2-\left(a+b\right)^2\right]+\left[2c\left(a+b\right)-2\left(a+b\right)c\right]+c^2\)
\(=c^2\)
@Khôi Bùi
\(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=\left(2a+b\right)\left[\left(2a+b\right)-\left(2a-b\right)\right]-2a\left(b-a\right)\)
\(=2b\left(2a+b\right)-2a\left(b-a\right)\)
\(=4ab+2b^2-2ab+2a^2=2\left(a^2+ab+b^2\right)\)
\(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b-c+a+b\right)\left(a+b-c-a-b\right)+2c\left(a+b\right)\)
\(=-c\left(2a+2b-c\right)+2c\left(a+b\right)=\)
\(-2c\left(a+b\right)+c^2+2c\left(a+b\right)=c^2\)
a)\(\left(a+b+c\right)^2-\left(a+b\right)^2-c^2\\ =\left(a+b\right)^2+2\left(a+b\right)c+c^2-\left(a+b\right)^2-c^2\\ =2\left(a+b\right)c\)
b)\(\left(a+b+c\right)^2-\left(b+c\right)^2-2a\left(b+c\right)\\ =a^2+2a\left(b+c\right)+\left(b+c\right)^2-\left(b+c\right)^2-2a\left(b+c\right)\\ =a^2\)
c)\(\left(3a+1\right)^2-2\left(2a+5\right)\left(3a+1\right)+\left(2a+5\right)^2\\ =\left(3a+1-2a-5\right)^2\\ =\left(a-4\right)^2\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
\(=\left(a+b-c\right)\left(a-b\right)^2\) nha !
P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2+4a^2-4ab+b^2\)
\(=2\left(a+b\right)^2+2c^2+4a^2-4ab+b^2\)
\(=2a^2+2b^2+4ab+2c^2+4a^2-4ab+b^2\)
\(=6a^2+3b^2+2c^2\)