A= x(x-2)(x+2)-(x-3)(x^2 +3x+9) vs x =1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x + 2)(x2 - 2x + 4) - -x(x2 + 2) = 15
<=> x3 + 8 - x3 - 2x = 15
<=> 2x = -7
<=> x= -7/2
Vậy S = {-7/2}
b) (x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49
<=> x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x + 6 = 49
<=> 24x = 24
<=> x = 1
Vậy S = {1}
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
![](https://rs.olm.vn/images/avt/0.png?1311)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(9\left(x-1\right)^2-\frac{4}{9}\div\frac{2}{9}=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2-2=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2=\frac{9}{4}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(3x-1\right)^6=\left(3x-1\right)^4\)
\(\Leftrightarrow\left(3x-1\right)^6-\left(3x-1\right)^4=0\)
\(\Leftrightarrow\left(3x-1\right)^4\cdot\left[\left(3x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(3x-1\right)^4=0\\\left(3x-1\right)^2=1\end{cases}}\Leftrightarrow x\in\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+1+5=0\)
\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)
Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)
b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\)
\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)
\(\Leftrightarrow3-3x^2=0\)
\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)
\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)
\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)
\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy x=\(\dfrac{-1}{2}\)
d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)
\(\Leftrightarrow x^3-27-x^3+4x-15=0\)
\(\Leftrightarrow4x-42=0\)
\(\Leftrightarrow x=10,5\)
Vậy x=10,5
A= x(x-2)(x+2)-(x-3)(x^2 +3x+9)
=x^3+2x^2-2x^2-4x-x^3-3x^2-9x+3x^2+9x+27
=-4x+27
Thay x=1/4 vào đa thức A có:
-4.1/4+27
=-27
\(A=x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(A=x\left(x^2-4\right)-\left(x^3-27\right)=x^3-4x-x^3+27=27-4x\)
Thay \(x=\frac{1}{4}\) vào A ta có : \(A=27-4.\frac{1}{4}=27-1=26\)