K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\left(3n+4\right)^2-16\)

\(=9n^2+24n+16-16\)

\(=9n^2+24n\)

\(=3\left(3n^2+8n\right)⋮3\)

6 tháng 7 2021

HỎI THỬ XEM THÔI

29 tháng 9 2017

ta có: (3n + 4)2 -16

= (3n + 4)2 - 42

= (3n + 4 - 4)(3n + 4 + 4)

= 3n(3n + 8)

vì 3\(⋮\) 3 => 3n(3n + 8)\(⋮\) 3

hay (3n + 4)2 -16 \(⋮\) 3

27 tháng 9 2018

óc chó mới ko bik làm bài này

28 tháng 9 2017

=(3n + 4)\(^2\)- 4\(^2\)

=(3n +4 -4)( 3n +4+4)

=3n( 3n +8) \(\Rightarrow\) (3n + 4)\(^2\)- 4\(^2\)\(⋮\) 3 \(\forall\) n

7 tháng 10 2018

Ta có: (3n + 4)2 - 16

= (3n + 4)2 - 42

= (3n + 4 - 4)(3n + 4 + 4)

= 3n(3n + 8) ⋮ 3

Vậy (3n + 4)2 - 16 ⋮ 3 với mọi số nguyên n

13 tháng 11 2015

tick cho mình rồi mình làm cho

22 tháng 6 2016

ta có 343=7^3

vì 9n^3 không chia hết cho 7

vì 9n^2 không chia hết cho 7

vì 3n  không chia hết cho 7

vì 16  không chia hết cho 7

=> 9n^3+9n^2+3n-16 không chia hết cho 343

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮88(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮55\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮55                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow3k(k+1)(k+2)(k+3)(k+4)⋮33                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.83.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120120