Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
a: Sửa đề: \(P=\left(\dfrac{x}{2x-2}+\dfrac{3-x}{2x^2-2}\right):\left(\dfrac{x+1}{x^2+x+1}+\dfrac{x+2}{x^3-1}\right)\)\(P=\left(\dfrac{x}{2\left(x-1\right)}+\dfrac{3-x}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{\left(x+1\right)\left(x-1\right)+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3-x}{2\left(x-1\right)\left(x+1\right)}:\dfrac{x^2-1+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)
\(=\dfrac{x^2+3}{2\left(x+1\right)}\)
b: P=3
=>x^2+3=6(x+1)=6x+6
=>x^2-6x-3=0
=>\(x=3\pm2\sqrt{3}\)
c: P>4
=>P-4>0
=>\(\dfrac{x^2+3-8\left(x+1\right)}{2\left(x+1\right)}>0\)
=>\(\dfrac{x^2-8x-5}{x+1}>0\)
TH1: x^2-8x-5>0 và x+1>0
=>x>-1 và (x<4-căn 21 hoặc x>4+căn 21)
=>-1<x<4-căn 21 hoặc x>4+căn 21
Th2: x^2-8x-5<0 và x+1<0
=>x<-1 và (4-căn 21<x<4+căn 21)
=>Vô lý
1) \(Q=-x\) khi:
\(\dfrac{x-3}{x+1}=-x\)
\(\Leftrightarrow x-3=-x\left(x+1\right)\)
\(\Leftrightarrow x-3=-x^2-x\)
\(\Leftrightarrow x-3+x^2+x\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2) \(Q< 1\) khi:
\(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow x-3< x+1\)
\(\Leftrightarrow x-x< 1+3\)
\(\Leftrightarrow0< 4\) (luôn đúng)
Vậy \(Q< 0\) với mọi x
3) \(Q=m\) khi:
\(\dfrac{x-3}{x+1}=m\)
\(\Leftrightarrow x-3=m\left(x+1\right)\)
\(\Leftrightarrow x-3=mx+m\)
\(\Leftrightarrow x-mx=m+3\)
\(\Leftrightarrow x\left(1-m\right)=m+3\)
\(\Leftrightarrow1-m\ne0\)
\(\Leftrightarrow m\ne1\)
a, ĐKXĐ:\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x^2+x-6\ne0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
b, \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(c,A=\dfrac{-3}{4}\\ \Leftrightarrow\dfrac{x-4}{x-2}=\dfrac{-3}{4}\\ \Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\\ \Leftrightarrow4x-16x=-3x+6\\ \Leftrightarrow4x-16x+3x-6=0\\ \Leftrightarrow7x-22=0\\ \Leftrightarrow x=\dfrac{22}{7}\)
d, \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Để \(A\in Z\Rightarrow\dfrac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng:
x-2 | -2 | -1 | 1 | 2 |
x | 0 | 1 | 3 | 4 |
Vậy \(x\in\left\{0;1;3;4\right\}\)
a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
x-2/x-3
=>(x-3)+1/x-3
Mà x-3/x-3
=>1/x-3
=>x-3\(\in\)Ư(1)
=>x=4 hoặc x=2