Rút gọn
\(\frac{512^4.128^6.64^2.2^{13}.4^7}{1024^2.64^5.128^3.8^4.512^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2048^2.2^{11}.8^6.64^7.128^3}{1024^4.4^8.16^7.2^{30}}=\frac{2^{22}.2^{11}.2^{18}.2^{42}.2^{21}}{2^{40}.2^{16}.2^{28}.2^{30}}=\frac{2^{114}}{2^{114}}=1\)
a: \(=\dfrac{-4\cdot13\cdot9\cdot5}{3\cdot4\cdot5\cdot2\cdot13}=\dfrac{3}{2}\)
b: \(=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5=\dfrac{5}{6}\)
Bài 1 )
a ) \(2.2^2.2^3.....2^x=1024\Leftrightarrow2^{1+2+....+x}=2^{10}\Leftrightarrow1+2+....+x=10\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=10\Leftrightarrow\left(x+1\right)x=20=4.5\Rightarrow x=4\)
b ) \(\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow3x+39=259-7x\Leftrightarrow3x+7x=259-39\Leftrightarrow10x=220\Rightarrow x=22\)
Bài 2 ) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}=\frac{1}{2}.8-\frac{2}{5}+\left(\frac{5^4.2^2-3.5^4}{5^4}\right)^{2014}\)
\(=4-\frac{2}{5}+\left[\frac{5^4\left(4-3\right)}{5^4}\right]^{2014}=\frac{18}{5}+1=\frac{23}{5}\)
Mình làm bài 1 thui nha, còn bài 2 thì còn tự tính là được thôi mừ !!!
Bài 1:
a) \(2.2^2.2^3...2^x=1024\)
\(=>2^{1+2+3+...+x}=2^{10}\)
\(< =>1+2+3+...+x=10\)
\(=>6+x=10\)
\(=>x=10-6\)
\(=>x=4.\)
Nếu đúng thì k cho mình nhá
\(F=\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{9}{4}\right)^9\div\left(\frac{3}{16}\right)^3}{2^7.5^2+512}\)
\(F=\frac{\left(\frac{2.5}{5}\right)^7+\left(\frac{9.16}{4.3}\right)^3}{2^7.5^2+2^9}=\frac{2^7+12^3}{2^7.5^2+2^9}=\frac{2^7+2^6.3^3}{2^7.5^2+2^9}=\frac{2^6.\left(2+3^3\right)}{2^7.\left(5^2+2^2\right)}=\frac{2^6.29}{2^7.29}\)
\(F=\frac{1}{2}\)
\(C=\frac{\left(\frac{2}{5}\right)^7\times5^7+\left(\frac{9}{4}\right)^3\div\left(\frac{3}{16}\right)^3}{2^7\times5^2+512}\)
\(=\frac{\left(\frac{2}{5}\times5\right)^7+\left(\frac{9}{4}\div\frac{3}{16}\right)^3}{2^7\times5^2+2^9}\)
\(=\frac{2^7+12^3}{2^7\times\left(25+2^2\right)}\)
\(=\frac{2^7+\left(2^2\times3\right)^3}{2^7\times\left(25+4\right)}\)
\(=\frac{2^7+2^6\times3^3}{2^7\times29}\)
\(=\frac{2^6\times\left(2+27\right)}{2^7\times29}\)
\(=\frac{29}{2\times29}\)
\(=\frac{1}{2}\)
\(\frac{15^3.8^2}{5^6.4^4}=\frac{\left(3.5\right)^3.\left(2^3\right)^2}{5^6.\left(2^2\right)^4}=\frac{3^3.5^3.2^6}{5^6.2^8}=\frac{3^3}{5^3.2^2}=\frac{27}{500}\)
A=1-1/2+1-1/4+...+1-1/2024
=10-(1/2+1/4+...+1/2024)
Đặt B=1/2+1/4+...+1/1024
=>2B=1+1/2+...+1/512
=>B=1-1/1024=1023/1024
=>A=10-1023/1024=9217/1024
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
\(=1-\frac{1}{1024}\)
\(=\frac{1023}{1024}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}.\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
<=> \(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\)
<=> \(2A-A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{256}+\frac{1}{512}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)
<=> \(A=1-\frac{1}{1024}\)
<=> \(A=\frac{1023}{1024}\)
Ta có :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A=\frac{2^{10}-1}{2^{10}}\)
\(A=\frac{1024-1}{1024}\)
\(A=\frac{1023}{1024}\)
Vậy \(A=\frac{1023}{1024}\)
Chúc bạn học tốt ~
Đặt tổng trên là A.
Ta có
A x 2 = 1+ 1/2+1/4+1/8+ 1/16+1/32+ 1/64+ 1/128 + 1/256 + 1/512
Ax2 - A = 1+ 1/2+1/4+1/8 +1/16 + 1/32 +1/64+ 1/128 + 1/256+ 1/512 - ( 1/2 + 1/4 +1/8+1/16+1/32+1/64 + 1/128+ 1/256 + 1/512+ 1/1024)
A = 1+ 1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/256 + 1/512 - 1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512- 1/1024
A = 1 - 1/ 1024 = 1023/1024
\(\frac{512^4.128^6.64^2.2^{13}.4^7}{1024^2.64^5.128^3.8^4.512^4}=\frac{2^{117}}{2^{119}}=\frac{2^{117}}{2^{117}.2^2}=\frac{1}{2^2}=\frac{1}{4}\)