Tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H. Gọi M,N,F là trung điểm BC, EF, AH.
C/M M, N, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao điểm của FC và AK.
Áp dụng định lý Menelaus cho tam giác FBC với cát tuyến A, G, K ta có:
\(\dfrac{AF}{AB}.\dfrac{KB}{KC}.\dfrac{GC}{GF}=1\Rightarrow\dfrac{GC}{GF}=\dfrac{KC}{KB}.\dfrac{AB}{AF}\). (1)
Áp dụng định lý Menelaus cho tam giác ACB với cát tuyến K, E, F ta có:
\(\dfrac{EA}{EC}.\dfrac{KC}{KB}.\dfrac{FB}{FA}=1\Rightarrow\dfrac{KC}{KB}=\dfrac{FA}{FB}.\dfrac{EC}{EA}\). (2)
Từ (1), (2) có \(\dfrac{GC}{GF}=\dfrac{EC}{EA}.\dfrac{AB}{FB}\). (*)
Mặt khác áp dụng định lý Menelaus cho tam giác AFC với cát tuyến B, H, E ta có:
\(\dfrac{HC}{HF}.\dfrac{BF}{BA}.\dfrac{EA}{EC}=1\Rightarrow\dfrac{HC}{HF}=\dfrac{AB}{FB}.\dfrac{EC}{EA}\). (**)
Từ (*), (**) ta có \(\dfrac{GC}{GF}=\dfrac{HC}{HF}\Rightarrow\dfrac{AC}{MF}=\dfrac{AC}{NF}\Rightarrow FM=FN\).
http://tailieu.metadata.vn/chi-tiet/-/tai-lieu/tuyen-tap-80-bai-toan-hinh-hoc-lop-9-pdf-17121.html
bạn tự vẽ hình nhé còn phần chứng minh để tui lo
a) để chứng minh 5 điểm này cùng nằm trên đường tròn thì bạn cần chứng minh 4 điểm A,K,F,E cùng nằm trên 1 đường tròn ( chứng minh tứ giác AKFE nội tiếp theo các cách chứng minh trong SGK toán 9 tập 2 trang 103 phần thứ 15) và bạn chứng minh 4 điểm này theo đúng hình vẽ mà bạn vẽ
sau đó chứng minh nốt K,E,F,H cùng nằm trên 1 đường tròn hoặc các điểm khác như : A,K,H,F ....... tùy hình vẽ (cách chứng minh giống như trên)
sau khi chứng minh đc 2 điều này thì => điều phải chứng minh ở phần a
b) để chứng minh 4 điểm này thẳng hàng thì có rất nhiều cách nhưng bạn nên chọn cách chứng minh 3 điểm M,H,S hoặc H,S,K , ..... cùng thẳng hàng sau đó => 4 điểm thẳng hàng
để chứng minh đc thì bạn nên xem hình vẽ và dữ kiện đã chứng minh ở phần a và suy ra những thứ cần thiết để có thể chứng minh đc cho phần b
bạn có thể chứng minh : ở 3 điểm đó có 3 góc mà khi cộng chúng lại với nhau sẽ bằng 180 độ => 3 điểm thẳng hàng
=> 4 điểm thẳng hàng
đây có thể là cách tốt nhất nhanh nhất mà mình nghĩ ra trong vòng vài phút mong bạn thông cảm thời gian của mình có hạn nên chỉ hướng dẫn đc tới đây ! .................
Tứ giác FEAH có: \(\widehat{FAH}=\widehat{AEH}=90^o\)
=> Tứ giác FEAH nội tiếp => \(\widehat{HEF}=\widehat{FAH}\)
Tứ giác ABDE có: \(\widehat{ADB}=\widehat{AEB}=90^o\)
=> Tứ giác ABDE nội tiếp => \(\widehat{BAD}=\widehat{BED}\)
Vậy \(\widehat{HEF}=\widehat{BED}\)
Xét \(\Delta\)HIE \(\left(\widehat{HIE}=90^o\right)\)và \(\Delta\)HKE \(\left(\widehat{HKE}=90^o\right)\)có:
EH chung
\(\widehat{HEI}=\widehat{HEK}\)
=> \(\Delta HIE=\Delta HKE\) (cạnh huyền-góc nhọn)
=> \(\hept{\begin{cases}EI=EK\\HI=HK\end{cases}}\)(2 cạnh tương ứng)
=> \(\Delta\)KEI cân tại E, \(\Delta\)HIK cân tại H
\(\Rightarrow\widehat{KIE}=\frac{1}{2}\widehat{IEK}\Rightarrow\widehat{KIE}+\widehat{FAH}=90^o\)
Mà \(\widehat{MHF}=\widehat{FAH}=90^o\)
Do đó: \(\widehat{KIE}=\widehat{MHF}\)=> Tứ giác FIMH nội tiếp => \(\widehat{MHF}=\widehat{HIF}=90^o\)
Tứ giác HMNK có: \(\widehat{HMN}=\widehat{HKN}=90^o\)=> Tứ giác HMNK nội tiếp
Ta có: \(\hept{\begin{cases}\widehat{HFN}=\widehat{HIK}\\\widehat{HNM}=\widehat{HIK}\\\widehat{HIK}=\widehat{HKI}\end{cases}}\)
=> \(\Delta\)HFN đồng dạng \(\Delta\)HIK (g.g)
=> \(\frac{HF}{HI}=\frac{HN}{HK},HI=HK\Rightarrow HF=HN\)
\(\Delta\)HFN cân tại H, HM _|_ FN => HM là đường trung tuyến của tam giác HFN
FM _|_ AD, BD _|_ AD => FM//BD
MF=MN, DB=DC nên \(\frac{AM}{AD}=\frac{MN}{DS}\)
Xét \(\Delta\)AMN và \(\Delta\)ADS có:
\(\widehat{AMN}=\widehat{ADS}\left(MN//BS\right),\frac{AM}{AD}=\frac{MN}{DS}\)
=> \(\Delta\)AMN đồng dạng \(\Delta\)ADS (c.g.c)
=> \(\widehat{MAN}=\widehat{DAS}\)
=> 2 tia AN, AS trùng nhau => A,N,S thẳng hàng
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng