Tìm các giá trị nguyên của x để :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài ĐKXĐ như nào bạn tự xét gtri thỏa mãn nhé
\(P=\frac{x^2}{x-1}=\frac{x^2-x+x-1+1}{x-1}=\frac{x\left(x-1\right)+\left(x-1\right)+1}{x-1}=x+1+\frac{1}{x-1}\)
Vì x nguyên nên x + 1 nguyên
Để P nguyên thì 1/x-1 nguyên ( đến đây quá dễ rồi:)) )
Như trên ta có : \(P=x+1+\frac{1}{x-1}=\left[\left(x-1\right)+\frac{1}{x-1}\right]+2\)
Vì x > 1, áp dụng bất đẳng thức AM-GM ta có :
\(P\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+2=4\). Đẳng thức xảy ra <=> x = 2
Vậy GTNN của P = 4 <=> x=2
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
c) Để A nhận giá trị nguyên khi và chỉ khi:
Kết hợp với điều kiện, tập hợp các giá trị của x nguyên để A nguyên là: {0; 2; -2; 4}.
a: \(P=\dfrac{x^2-x-18+2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x}{x+3}\)
b: P=2/3
=>x/(x+3)=2/3
=>3x=2x+6
=>x=6(nhận)
c: P nguyên
=>x chia hết cho x+3
=>x+3-3 chia hết cho x+3
=>x+3 thuộc {1;-1;2;-2}
=>x thuộc {-2;-4;-1;-5}
Hướng dẫn giải:
Điều kiện xác định của phân thức: x ≠ 1
Ta có
Để N nguyên nguyên ⇒ x - 1 là ước của 2
Ư ( 2 ) = 1 ; - 1 ; 2 ; - 2
x – 1 = 1 ⇒ x =2 (thỏa mãn điều kiện xác định);
x - 1 = -1 ⇒ x = 0 (thỏa mãn điều kiện xác định);
x - 1 = 2 ⇒ x = 3 (thỏa mãn điều kiện xác định);
x - 1 = -2 ⇒ x = -1 (thỏa mãn điều kiện xác định);
Vậy với x ∈ { -1;0;2;3 } thì phân thức N nhận giá trị nguyên
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
\(\left(x^2-x-1\right)⋮\left(x-1\right)\Rightarrow[x\left(x-1\right)-1]⋮\)(x-1) mà x(x-1) chia hết cho x-1 suy ra 1 chia hết x-1 suy ra x-1 thuộc ư(1) suy ra x-1 thuộc (1;-1)suy ra x thuộc (2;0)
\(\left(x^2-x-1\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(x^2-2x+1+x-2\right)⋮\left(x-1\right)\)
\(\Rightarrow\left[\left(x-1\right)^2+x-2\right]⋮\left(x-1\right)\)
Vì \(\left(x-1\right)^2⋮\left(x-1\right)\)nên \(\left(x-2\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(x-1-1\right)⋮\left(x-1\right)\)
Vì \(\left(x-1\right)⋮\left(x-1\right)\)nên \(-1⋮\left(x-1\right)\)\(\Rightarrow\left(x-1\right)\inƯ\left(-1\right)\)
\(\Rightarrow x\in\left(0;2\right)\)