Cho hai đa thức:
Hãy tính P(x) + Q(x) và P(x) – Q(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P\left(x\right)=5x^3-3x+7-x\)
\(=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)
\(=-5x^3-x^2+4x-5\)
Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)
\(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)
b, \(P\left(x\right)+Q\left(x\right)=0\)
\(\Leftrightarrow-x^2+2=0\)
\(\Leftrightarrow-x^2=-2\)
\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)
\(\Rightarrow x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}\)
P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2
= -5x3 - x2 + 4x - 5
P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5
= -x2 + 2
P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5
= 10x3 + x2 - 8x + 12
Đặt H(x) = P(x) + Q(x)
=> H(x) = -x2 + 2
H(x) = 0 <=> -x2 + 2 = 0
<=> -x2 = -2
<=> x2 = 2
<=> x = \(\pm\sqrt{2}\)
Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)
P + Q = (-5x4 +3x3 + 7x2 + x – 3) + (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 + 5x4 – 4x3 – x2 + 3x + 3
= (-5x4 + 5x4 ) + (3x3 – 4x3 ) + (7x2 – x2 ) + (x + 3x) + (-3 + 3)
= 0 + (-x3) + 6x2 +4x
= -x3 + 6x2 +4x
P – Q = (-5x4 +3x3 + 7x2 + x – 3) - (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 - 5x4 + 4x3 + x2 - 3x - 3
= (-5x4 - 5x4 ) + (3x3 + 4x3 ) + (7x2 + x2 ) + (x - 3x) + (-3 - 3)
= -10x4 + 7x3 + 8x2 + (-2x) + (-6)
= -10x4 + 7x3 + 8x2 – 2x – 6
a) Đa thức P + Q có bậc là 3
Đa thức P – Q có bậc là 4
b) +) Tại x = 1 thì P + Q = - 13 + 6. 12 + 4.1 = 9
P – Q = -10. 14 + 7.13 + 8.12 – 2. 1 – 6 = -3
+) Tại x = - 1 thì P + Q = - (-1)3 + 6. (-1)2 + 4.(-1) = -(-1) + 6.1 - 4 = 3
P – Q = -10. (-1)4 + 7.(-1)3 + 8.(-1)2 – 2. (-1) – 6 = -10 . 1 + 7.(-1) + 8 + 2 – 6 = -13
c) Đa thức P + Q có nghiệm là x = 0 vì đa thức này có hệ số tự do bằng 0.
\(P\left(x\right)+Q\left(x\right)=\left(-2x^4-7x^2+3x\right)+\left(5x^3-3x^2+4x-6\right)\)
\(=-2x^4-7x^2+3x+5x^3-3x^2+4x-6\)
\(=-2x^4+5x^3+\left(-7x^2-3x^2\right)+\left(3x+4x\right)-6\)
\(=-2x^4+5x^3-10x^2+7x-6\)
\(P\left(x\right)-Q\left(x\right)=\left(-2x^4-7x^2+3x\right)-\left(5x^3-3x^2+4x-6\right)\)
\(=-2x^4-7x^2+3x-5x^3+3x^2-4x+6\)
\(=-2x^4-5x^3+\left(-7x^2+3x^2\right)+\left(3x-4x\right)+6\)
\(=-2x^4-5x^3-4x^2-x+6\)
a) \(^+\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)+Q\left(x\right)=x^2+5x}\end{matrix}\)
\(\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\^-Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)-Q\left(x\right)=-2x^3+3x^2-5x-8}\end{matrix}\)
b) Cho \(P\left(x\right)+Q\left(x\right)=0\)
hay \(x^2+5x=0\)
\(x.x+5x=0\)
\(x.\left(x+5\right)=0\)
⇒ \(x=0\) hoặc \(x+5=0\)
⇒ \(x=0\) hoặc \(x\) \(=0-5=-5\)
Vậy \(x=0\) hoặc \(x=-5\) là nghiệm của đa thức \(P\left(x\right)+Q\left(x\right)\)
` P(x) = x^3-2x^2+x-2`
`Q(x) = 2x^3 - 4x^2+ 3x – 56`
a) `P(x) -Q(x)`
`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`
`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`
`= -x^2 +2x^2 -2x +54`
b) Thay `x=2` vào `P(x)` ta đc
`P(2) = 2^3 -2*2^2 +2-2`
`= 8-8+2-2 =0`
Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`
Thay `x=2` vào `Q(x)` ta đc
`Q(2) = 2*2^3 -4*2^2 +3*2-56`
`=16 -16+6-56`
`= -50`
Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
a: P(x)=x^3-2x^2+3x-10
Q(x)=-x^3+4x^2-2x+9
b: P(x)+Q)(x)=2x^2+x-1
P(x)-Q(x)=2x^3-6x^2+5x-19
c: H(x)=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=-1; x=1/2
a: P(x)=-5x^3+6x^2+3x-1
Q(x)=-5x^3+6x^2+4x+2
b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2
=-10x^3+12x^2+7x+1
T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2
=-x-3
c: T(x)=0
=>-x-3=0
=>x=-3
d: G(x)=-(-10x^3+12x^2+7x+1)
=10x^3-12x^2-7x-1
Mk giải rùi đó
K cho mk nha
Hãy tính P(x) + Q(x) và P(x) – Q(x).
Lời giải:
Sắp xếp hai đa thức theo lũy thừa giảm dần của biến rồi sau đó thực hiện phép tính:
Bạn tham khảo nhé !
Sắp xếp hai đa thức theo lũy thừa giảm dần của biến rồi sau đó thực hiện phép tính:
Bạn có thấy hình ko ?