K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

\(\left(\frac{\sqrt{8}}{3}\right)^2=\frac{8}{9}>\frac{9}{16}=\left(\frac{3}{4}\right)^2\Rightarrow\frac{\sqrt{8}}{3}>\frac{3}{4}\)

7 tháng 8 2015

\(\frac{\sqrt{10}}{2}=\sqrt{\frac{10}{4}}<\)\(\sqrt{20}=2\sqrt{5}\)

\(\Rightarrow-\frac{\sqrt{10}}{2}>-2\sqrt{5}\)

7 tháng 8 2015

\(\frac{-\sqrt{10}}{2}=\frac{-\sqrt{2.5}}{2}=\frac{-\sqrt{2}.\sqrt{5}}{2}=-\frac{\sqrt{5}}{\sqrt{2}}=-\sqrt{\frac{5}{2}}>-2\sqrt{5}\)

đúng k

31 tháng 8 2016

vì : \(\frac{99}{-100}< -1\)và \(\frac{-102}{101}>-1\)

=> \(\frac{99}{-100}>\frac{-102}{101}\)

k nha!

31 tháng 8 2016

Ta có:

\(\frac{99}{-100}< -1\) ; \(\frac{-102}{101}>-1\)

\(\Rightarrow\frac{99}{-100}< \frac{-102}{101}\)

nha bn

25 tháng 8 2019

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

26 tháng 8 2019

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)

27 tháng 2 2019

nhanh ho mik mai cha bai roi

ai nhanh nhat mik k 

nhung phai dung

15 tháng 10 2015

a/

-Cauchy-Schwar 

\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)

Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)

\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1.

b/

Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)

\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)

\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)

\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)

\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)

18 tháng 7 2019

Bạn xem hộ mk đề cậu b nhé căn 5- căn 2 hay là căn 5 - 2undefined

18 tháng 7 2019

căn 5 - căn 2 nhé bn