tính giá trị biểu thức \(\left(\frac{215}{2010}-\frac{120}{2011}\right)\)x \(\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
\(B=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2010^2-1}{2010^2}\right)\)
\(B=\left(\frac{\left(2-1\right)\left(2+1\right)}{2^2}\right)...\left(\frac{\left(2010-1\right)\left(2010+1\right)}{2010^2}\right)\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2009.2011}{2010.2010}\)
\(B=\left(\frac{1}{2}.\frac{2}{3}...\frac{2009}{2010}\right)\left(\frac{3}{2}.\frac{4}{3}...\frac{2011}{2010}\right)\)
\(B=\frac{1}{2010}.\frac{2011}{2}\)
\(B=\frac{2011}{4020}\)
\(\frac{1}{2011}.x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2010}\right).\left(1-\frac{1}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2009}{2010}.\frac{2010}{2011}\)
\(\frac{1}{2011}.x=\frac{1.2.3...2009.2010}{2.3.4...2010.2011}\)\(=\frac{1}{2011}\)
\(x=\frac{1}{2011}:\frac{1}{2011}=1\)
Vậy x=1
\(\frac{1}{2011}.x=\frac{1}{2}.\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)......\left(\frac{2010}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{2}{4}.\left(\frac{4}{6}\right).\left(\frac{6}{8}\right).......\left(\frac{4018}{4020}\right).\left(\frac{4020}{4022}\right)\)
\(\frac{1}{2011}.x=\frac{2.4.6.8.....4018.4020}{4.6.8.10.....4020.4022}\)
\(\frac{1}{2011}.x=\frac{2}{4022}\)
\(\Rightarrow\)\(x=\frac{2}{4022}:\frac{1}{2011}=1\)
Ai thấy đún thì ủng hộ mink nha !!!
Thanks you very much !!
Chúc các bạn luôn học giỏi !!!
\(\left(\frac{215}{2010}-\frac{120}{2011}\right)\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{215}{2010}-\frac{120}{2011}\right)\times\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{215}{2010}-\frac{120}{2011}\right)\times0=0\)
= \(\left(\frac{215}{2010}-\frac{120}{2011}\right)\cdot\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)=\left(\frac{215}{2010}-\frac{120}{2011}\right)\left(\frac{1}{12}-\frac{1}{12}\right)=0\cdot\left(\frac{215}{2010}-\frac{120}{2011}\right)=0\)