( 3 𝑥 + 3/ 5 ) ( | 𝑥 | − 1 ⋅ 1/4 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
a) \(\sqrt{x}=3\left(x\ge0\right)\Leftrightarrow x=9\)
b) \(\sqrt{x}=\sqrt{5}\left(x\ge0\right)\Leftrightarrow x=5\)
c) \(\sqrt{x}=0\left(x\ge0\right)\Leftrightarrow x=0\)
d) \(\sqrt{x}=-2\left(x\ge0\right)\Leftrightarrow x=\varnothing\)
e) \(\sqrt{x-2}=3\left(x\ge0\right)\Leftrightarrow x-2=9\Leftrightarrow x=11\)
g) \(\sqrt{2x-1}=5\left(x\ge0\right)\Leftrightarrow2x-1=25\Leftrightarrow2x=26\Leftrightarrow x=13\)
h) \(\sqrt{x-3}=0\left(x\ge0\right)\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: \(\sqrt{x}=3\)
nên x=9
b: \(\sqrt{x}=\sqrt{5}\)
nên x=5
c: \(\sqrt{x}=0\)
nên x=0
d: \(\sqrt{x}=-2\)
nên \(x\in\varnothing\)
e: \(\sqrt{x}-2=3\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25
g: \(\sqrt{2x}-1=5\)
\(\Leftrightarrow2x=36\)
hay x=18
h: Ta có: \(\sqrt{x}-3=0\)
nên x=9
1)(x+1)thuộc ước của -2
ư(2)={1;2;-1;-2}
x+1 | 1 | 2 | -1 | -2 |
x | 0 | 1 | -2 | -3 |
vậy x =0;x=1;x=-2;x=-3
2)ta có : 2x+7=2(x+3)+1
2(x+3)chia hết cho x+3
=>để 2x+7chia hết cho x+3
<=>1chia hết cho x+3
=>x+3 thuộc ư(1)
u(1)={1;-1}
x+3 | 1 | -1 |
2 | -2 | -4 |
vậy x=-2;x=-4
\(\left(x-1\right)\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\dfrac{3}{4}x=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
( 3 𝑥 + 3/ 5 ) ( | 𝑥 | −1/4 ) = 0 (đề bài ở trên sai nha)
(3x+3/5)(|x|-1 . 1/4)=0
<=>[ 3x+3/5 =0
[ |x|-1.1/4=0
<=>[ 3x=-3/5
[ |x| -1/4=0
<=> [ x=-1/5
[ |x| = 1/4
<=> [x=-1/5
[x =1/4
vậy x={1/4 ; -1/5}