K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+z}{10+21}=\frac{62}{31}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot10=20\\y=2\cdot15=30\\z=2\cdot21=42\end{cases}}\)

30 tháng 6 2021

Ta có \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)(1)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}=\frac{y}{15}=\frac{z}{21}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Đặt  \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=k\Rightarrow\hept{\begin{cases}x=10k\\y=15k\\z=21k\end{cases}}\)

mà x + z = 62

<=> 10k + 21k = 62

<=> 31k = 62

<=> k = 2

Khi đó y = 15.2 = 30 

Vậy y = 30

19 tháng 9 2023

\(B=\left(x+y\right)^3+3\left(x-y\right)\left(x+y\right)^2+3\left(x-y\right)^2\left(x+y\right)+\left(x-y\right)^3\)

\(=\left(x+y\right)^3+3\cdot\left(x+y\right)^2\cdot\left(x-y\right)+3\cdot\left(x+y\right)\cdot\left(x-y\right)^2+\left(x-y\right)^3\)

\(=\left[\left(x+y\right)+\left(x-y\right)\right]^3\)

\(=\left(x+y+x-y\right)^3\)

\(=\left(2x\right)^3\)

\(=8x^3\)

\(---\)

\(C=8\left(x+2y\right)^3-6\left(x+2y\right)^2x+12\left(x+2y\right)x^2-8x^3\) (sửa đề)

\(=\left[2\left(x+2y\right)\right]^3-3\cdot\left(x+2y\right)^2\cdot2x+3\cdot\left(x+2y\right)\cdot\left(2x\right)^2-\left(2x\right)^3\)

\(=\left[2\left(x+2y\right)-2x\right]^3\)

\(=\left(2x+4y-2x\right)^3\)

\(=\left(4y\right)^3\)

\(=64y^3\)

\(---\)

\(D=\left(x-y\right)^3-3\cdot\dfrac{\left(x-y\right)^2}{2}\cdot y+3\cdot\dfrac{\left(x-y\right)}{4}\cdot y^2-\dfrac{y^3}{8}\)

\(=\left(x-y\right)^3-3\cdot\left(x-y\right)^2\cdot\dfrac{y}{2}+3\cdot\left(x-y\right)\cdot\left(\dfrac{y}{2}\right)^2-\left(\dfrac{y}{2}\right)^3\)

\(=\left[\left(x-y\right)-\dfrac{y}{2}\right]^3\)

\(=\left(x-y-\dfrac{y}{2}\right)^3\)

\(=\left(x-\dfrac{3}{2}y\right)^3\)

#\(Toru\)

22 tháng 9 2019

thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải

24 tháng 9 2019

1/ Biến đổi vế trái , ta có :

(x-y)(x+y)= x2+xy - xy-y2= x2-y2

=> (x-y) (x+y) =x2-y2

2/ Biến đổi vế trái , ta có :

(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3

= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3

=> (x-y) (x2+xy+y2) =x3-y3

3/ / Biến đổi vế trái , ta có :

(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3

(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

24 tháng 8 2023

Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.

1. Có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^2=3^2\)

\(\Leftrightarrow x^2+2xy+y^2=9\)

\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))

\(------\)

Lại có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^3=3^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)

\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)

\(\Leftrightarrow x^3+y^3=18\)

Ta có: \(x^2+y^2=7\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)

\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)

\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)

24 tháng 8 2023

2. Bạn làm tương tự như ý 1 là được nhé!!

2 tháng 5 2023

Ta có:

x^3 + y^3 + x^2 + y^2 = 2xy(x+y)

Đặt S = x + y, P = xy, ta có:

x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS

Vậy ta có:

S^3 - 3PS + S^2 - 2P = 0

S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0

Do đó, ta có:

S^2 + S - 3P = 0

Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:

S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2

Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:

S = (-1 + sqrt(1 + 12P))/2

Tiếp theo, ta có:

K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)

= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)

= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))

= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)

= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))

= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)

= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)

= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +

a: =2(x-y)^3/(x-y)-7(x-y)^2/(x-y)+(x-y)/(x-y)

=2(x-y)^2-7(x-y)+1

b: =3(x-y)^5/5(x-y)^2-2(x-y)^4/5(x-y)^2+3(x-y)^2/5(x-y)^2

=3/5(x-y)^3-2/5(x-y)^2+3/5

21 tháng 6 2023

\(a,\)

\(\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]:\left(x-y\right)\)

\(=\left[2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)\right]:\left(x-y\right)\)

\(=\left\{\left(x-y\right)\left[2\left(x-y\right)^2-7\left(x-y\right)+1\right]\right\}:\left(x-y\right)\)

\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)

\(b,\)

\(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:\left[5\left(x-y\right)^2\right]\)

 

\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

20 tháng 10 2020

\(A=\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)\)

\(=x^2+2xy+y^2+x^2-2xy+y^2+2\left(x^2-y^2\right)\)

\(=2x^2+2x^2=4x^2\)

Vs x = 1/2 ; y = 3 ⇒ \(A=\frac{1}{4}.4=1\)

\(B=3x^2-6xy+y^2-2x^2-4xy-2y^2-x^2+y^2=-10xy=\frac{1}{2}.3.10=15\)

\(C=x^3+3x^2y+3xy^2+y^2-x^3+3x^2y-3xy^2+y^3-6x^2y-1=2y^2-1=18-1=17\)\(D=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2=\frac{1}{4}.9+\frac{1}{2}.27=\frac{9}{4}+\frac{108}{4}=\frac{117}{4}\)Check lại nhé <33 sợ sai lém

20 tháng 10 2020

cảm ơn nhiều ạ

giải cho em bài nx đc ko ạ