Chứng minh a song song với b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)
suy ra :Ay // Bz
1.
a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song
b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)
Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)
2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé
a, Vì BAC = 90o
=> BA ⊥ AC
Mà HD ⊥ AB (gt)
=> AC // HD (từ vuông góc đến song song)
b, Vì AC // HD (cmt) => BHD = HCA = 30o
Vì AH ⊥ BC (gt) => AHB = 90o
Xét △BDH vuông tại D có: DBH + BHD = 90o (tổng 3 góc trong tam giác)
=> DBH + 30o = 90o
=> DBH = 60o
Xét △BAH vuông tại H có: BAH + ABH = 90o
=> BAH + 60o = 90o
=> BAH = 30o