K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

`-3x^2+4x+15=0`

`<=>3x^2-4x-15=0`

`<=>3x^2-9x+5x-15=0`

`<=>3x(x-3)+5(x-3)=0`

`<=>(x-3)(3x+5)=0`

`<=>` \(\left[ \begin{array}{l}x-3=0\\3x+5=0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-\dfrac53\end{array} \right.\) 

Vậy `S={3,-5/3}`

22 tháng 4 2018

( bn xem lại đầu bài giúp mk nha! )

ta có: \(f_{\left(x\right)}=3x^{1800}.x^{200}+5+4x^{101}.x^{99}+3x^{15}.x^5+2.x^2+2000\)

          \(f_{\left(x\right)}=3x^{2000}+4x^{200}+3x^{20}+2x^2+2005\)

mà \(3x^{2000}\ge0;4x^{200}\ge0;3x^{20}\ge0;2x^2\ge0\)

\(\Rightarrow3x^{2000}+4x^{200}+3x^{20}+2x^2\ge0\)

mà \(2005>0\Rightarrow3x^{2000}+4x^{200}+3x^{20}+2x^2+2005>0\)

=> Không tồn tại giá trị của x để f(x) =0

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`

`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `

`M(x)= 4x^2-3x+6`

`b,` giá trị của `M(x)` tại `x=0`

`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`

`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`

Giá trị của `M(x)` tại `x=1`

`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`

`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`

`c,` Giá trị của `P(x)` là cái gì bạn nhỉ? 

1:

a: 2x-3=5

=>2x=8

=>x=4

b: (x+2)(3x-15)=0

=>(x-5)(x+2)=0

=>x=5 hoặc x=-2

2:

b: 3x-4<5x-6

=>-2x<-2

=>x>1

a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)

\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)

\(=-17x+18\)

7 tháng 11 2017

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3