chứng minh bằng phương pháp quy nạp: \(\left(1+a\right)^n\ge1+na;a>-1,n\in N,n\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tổng của $n$ số hạng trong dãy là cấp số nhân $(u_n)$ với công bội $q$ là:
$S_n=u_1+u_2+....+u_n=u_1+u_1q+u_1q^2+...+u_1q^{n-1}$
$=u_1(1+q+q^2+....+q^{n-1})$
$qS_n=u_1(q+q^2+q^3+...+q^n)$
$\Rightarrow qS_n-S_n=u_1(q+q^2+q^3+...+q^n)-u_1(1+q+q^2+....+q^{n-1})$
$\Rightarrow S_n(q-1)=u_1(q^n-1)$
$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$
Ta có đpcm.
Với n = 1 thì \(x^1\ge2.x^0=0\)
Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).
Ta phải chứng minh :
\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)
\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)
Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)
Lời giải:
Xét csn $(u_n)$ với công bội $q$
Ta có:
$S_n=u_1+u_2+...+u_n=u_1+u_1q+u_1q^2+....+u_1q^{n-1}$
$=u_1(1+q+q^2+....+q^{n-1})$
$qS_n=u_1(q+q^2+q^3+....+q^n)$
$\Rightarrow qS_n-S_n=u_1(q^n-1)$
$\Rightarrow S_n(q-1)=u_1(q^n-1)$
$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$
Ta có đpcm.
Kí hiệu đăng thức cần chứng minh là (*)
+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng
+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)
Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)
=> (*) đúng với n = k+ 1
Vậy.....
1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)
= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)
= (n + 1).n : 2 (đpcm)
a) Năm số hạng đầu của dãy số là -1, 2, 5, 8, 11.
b) Chứng minh un = 3n - 4 bằng phương pháp quy nạp:
Với n =1 thì u1 3.1 - 4 = -1, đúng.
Giả sử hệ thức đúng với n = k ≥ 1, tức là uk = 3k -4. Ta chứng minh hệ thức cũng đúng với n = k + 1.
Thật vậy, theo công thức của dãy số và giả thiết quy nạp, ta có:
uk+1 = uk + 3 = 3k - 4 + 3 = 3(k + 1) - 4.
Vậy hệ thức đúng với mọi n ε N*
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.