S =1 / 21 + 1/ 22 + 1/ 23 + ... + 1 / 149 + 1 / 150
hãy so sánh S với 3/ 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: S=120+121+122+...+150S=120+121+122+...+150
Ta có: S=120+121+122+...+150S=120+121+122+...+150
=120+(121+122+...+130)+(131+132+...+140)+(141+142+...+150)=120+(121+122+...+130)+(131+132+...+140)+(141+142+...+150)
⇔S>120+13+14+15=14+13+14⇔S>120+13+14+15=14+13+14
⇔S<=54⇔S>14+14+14=34(đpcm)
\(S=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{150}\)
\(=\left(\frac{1}{21}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+...+\frac{1}{150}\right)\)
\(>\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)+\left(\frac{1}{150}+...+\frac{1}{150}\right)\)
\(=\frac{20}{40}+\frac{40}{80}+\frac{70}{150}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{7}{15}>\frac{5}{4}\)
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
thank you