\(x\) . \(\dfrac{8}{16}\) = \(\dfrac{32}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{3.5}+\dfrac{8}{5.9}+\dfrac{12}{9.15}+...+\dfrac{32}{x\left(x+16\right)}=\dfrac{16}{15}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+\dfrac{6}{9.15}+..+\dfrac{16}{X.\left(X+16\right)}\right)=\dfrac{16}{15}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+...+\dfrac{1}{X}-\dfrac{1}{X+16}=\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{1}{3}-\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{-1}{5}\)
\(X+16=-5\)
\(X=-21\)
Đề sai nha bạn mình sửa luôn
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{32}{1-x^{32}}=VP\left(đpcm\right)\)
\(\Leftrightarrow\dfrac{7x-8}{32}-\dfrac{2\left(5-x\right)}{32}>\dfrac{16\left(x+9\right)}{32}+\dfrac{4}{32}\)
\(\Leftrightarrow7x-8-2\left(5-x\right)>16\left(x+9\right)+4\)
\(\Leftrightarrow7x-8-10+2x>16x+148\)
\(\Leftrightarrow-7x>166\)
\(\Rightarrow x< -\dfrac{166}{7}\)
98775 - 32 x 85
=98775 -2720
=96055
67500 - 24 x 236
= 67500 -5664
=61836
568 + 101598 : 287
= 568 +354
=922
6875 + 980 -180
=7855 -180
=7675
\(\dfrac{2}{5}+\dfrac{3}{10}-\dfrac{1}{2}\)
\(=\dfrac{7}{10}-\dfrac{1}{2}\)
= \(\dfrac{1}{5}\)
\(\dfrac{8}{11}+\dfrac{8}{33}x\dfrac{3}{4}\)
\(=\dfrac{8}{11}+\dfrac{2}{11}\)
\(=\dfrac{10}{11}\)
\(\dfrac{7}{9}x\dfrac{3}{14}:\dfrac{5}{8}\)
\(=\dfrac{1}{6}:\dfrac{5}{8}\)
\(=\dfrac{1}{6}x\dfrac{8}{5}\)
\(=\dfrac{8}{30}\)
\(=\dfrac{4}{15}\)
\(\dfrac{5}{12}-\dfrac{7}{32}:\dfrac{21}{16}\)
\(=\dfrac{5}{12}-\dfrac{7}{32}x\dfrac{16}{21}\)
\(=\dfrac{5}{12}-\dfrac{1}{6}\)
\(=\dfrac{5}{12}-\dfrac{2}{12}\)
\(=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\dfrac{\left(17\dfrac{8}{19}-16\dfrac{9}{18}\right).\left(17,5+16\dfrac{17}{51}-32\dfrac{15}{22}\right)}{\dfrac{7}{3.13}+\dfrac{7}{13.23}+\dfrac{7}{23.33}}\)
=\(\dfrac{\dfrac{35}{38}.\dfrac{38}{33}}{\dfrac{7}{10}\left(\dfrac{1}{3}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\left(\dfrac{1}{3}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\dfrac{10}{33}}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{33}}\)
=\(\dfrac{35}{33}:\dfrac{7}{33}\)
=\(\dfrac{35}{33}.\dfrac{33}{7}\)
=5
2.
\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)
\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)
\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)
\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)
Từ $(1);(2)$ ta có đpcm.
1.
\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)
\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)
\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)
\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)
\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)
Từ $(1);(2)$ ta có đpcm.
\(\dfrac{x}{x+4}+\dfrac{4}{x-4}-\dfrac{32}{x^2-16}\)
\(=\dfrac{x\left(x-4\right)+4\left(x+4\right)-32}{\left(x+4\right).\left(x-4\right)}\)
\(=\dfrac{x^2-4x+4x+16-32}{\left(x+4\right).\left(x-4\right)}\)
\(=\dfrac{x^2-16}{x^2-16}\)
\(=1\)
Ta có: \(\dfrac{x}{x+4}+\dfrac{4}{x-4}-\dfrac{32}{x^2-16}\)
\(=\dfrac{x\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}+\dfrac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\dfrac{32}{x^2-16}\)
\(=\dfrac{x^2-4x+4x+16-32}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{x^2-16}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=1\)
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)
\(A=1-\dfrac{1}{256}\)
\(A=\dfrac{255}{256}\)
\(x\cdot\dfrac{8}{16}=\dfrac{32}{16}\)
\(\Leftrightarrow x=\dfrac{32}{16}:\dfrac{8}{16}\)
\(\Leftrightarrow x=\dfrac{32}{16}\cdot\dfrac{16}{8}\)
\(\Leftrightarrow x=4\)
X=32/16:8/16
=>x=4