giải giúp câu 15 của bài 14 i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`15)(-5sqrtx+4)/(3sqrtx-2)+(6sqrtx+4)/(2sqrtx+3)+(29sqrtx-28)/(3(6x+5sqrtx-6))`
`=(3(-5sqrtx+4)(2sqrtx+3)+3(6sqrtx+4)(3sqrtx-2)+29sqrtx-28)/(3(3sqrtx-2)(2sqrtx+3))`
`=(-30x-21sqrtx+36+54x-24+29sqrtx-28)/(3(3sqrtx-2)(2sqrtx+3))`
`=(24x+8sqrtx-16)/(3(3sqrtx-2)(2sqrtx+3))`
`=(8(3sqrtx-2)(sqrtx+1))/(3(3sqrtx-2)(2sqrtx+3))`
`=(8(sqrtx+1))/(3(2sqrtx+3))`
`16)(2sqrtx-4)/(3sqrtx-4)-(4+2sqrtx)/(sqrtx-2)+(x+13sqrtx-20)/(3x-10sqrtx+8)`
`=((2sqrtx-4)(sqrtx-2)-(4+2sqrtx)(3sqrtx-4)+x+13sqrtx-20)/((3sqrtx-4)(sqrtx-2)`
`=(2x-8sqrtx+8-6x-4sqrtx+16+x+13sqrtx-20)/((3sqrtx-4)(sqrtx-2)`
`=(-3x+sqrtx+4)/((3sqrtx-4)(sqrtx-2)`
`=(-(3sqrtx-4)(sqrtx+1))/((3sqrtx-4)(sqrtx-2)`
`=(-(sqrtx+1))/(sqrtx-2)`
16. \(\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}-\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}+\dfrac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
=\(\dfrac{\left(2\sqrt{x}-4\right)\left(\sqrt{x}-2\right)-\left(4+2\sqrt{x}\right)\left(3\sqrt{x}-4\right)+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
=\(\dfrac{2x-8\sqrt{x}+8-\left(4\sqrt{x}+6x-16\right)+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
=\(\dfrac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
=\(\dfrac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(x+2\right)}\)
=\(\dfrac{-\left(3x+3\sqrt{x}-4\sqrt{x}-4\right)}{\left(3\sqrt{x}-4\right)\left(x+2\right)}\)
=\(\dfrac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{-\sqrt{x}-1}{\sqrt{x}+2}\)
14.
=\(\dfrac{-\left(7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{-7x-21\sqrt{x}-14}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{10x-12\sqrt{x}+2}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)+\(\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{-7x-21\sqrt{x}-14+10x-12\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{3x-6\sqrt{x}}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
17.
\(\dfrac{3}{1-\sqrt{2}}+\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{3\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)^2}{-1}=-\left(3\sqrt{2}+3-3+2\sqrt{2}\right)=-5\sqrt{2}\)
\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}+\dfrac{6}{1-\sqrt{5}}=\dfrac{\left(\sqrt{5}-1\right).\left(1-\sqrt{5}\right)+6.\left(\sqrt{5}+1\right)}{-4}=\dfrac{6-2\sqrt{5}-6\sqrt{5}-6}{4}=\dfrac{-8\sqrt{5}}{4}=-2\sqrt{5}\)
\(\dfrac{\sqrt{2}-\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}+2}=\dfrac{\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{6}+2\right)+\left(\sqrt{3}-\sqrt{2}\right).\left(2-\sqrt{6}\right)}{-2}=\dfrac{2\left(\sqrt{12}-\sqrt{18}\right)}{-2}=\sqrt{18}-\sqrt{12}\)
\(\dfrac{-31+8\sqrt{x}-x}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)
\(=\dfrac{-31+8\sqrt{x}-x}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{\sqrt{x}-5}\)
\(=\dfrac{-31+8\sqrt{x}-x-x+25+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
`11)1/(3+sqrt5)+1/(sqrt5-3)=(3-sqrt5)/(9-5)+(sqrt5+3)/(5-9)=(3-sqrt5-3-sqrt5)/4=-sqrt5/2` $\\$ `12)1/(sqrt2-sqrt6)-1/(sqrt6-sqrt2)=(sqrt2+sqrt6)/(2-6)-(sqrt6-sqrt2)/(6-2)=(-sqrt2-sqrt6-sqrt6+sqrt2)/4=-sqrt6/2` $\\$ `13)1/(sqrt2-sqrt3)-3/(sqrt{18}+2sqrt3)=(sqrt2+sqrt3)/(2-3)-(3(sqrt{18}-2sqrt3))/(18-12)=-(sqrt2+sqrt3)-(sqrt{18}-3sqrt2)/2=(-2sqrt2-2sqrt3-3sqrt2+2sqrt3)/2=-(5sqrt2)/2` $\\$ `14)3/(1-sqrt2)+(sqrt2-1)/(sqrt2+1)=(3(1+sqrt2))/(1-2)+(sqrt2-1)^2/(2-1)=-3(1+sqrt2)+3-2sqrt2=-5sqrt2`
Mình đọc không kĩ xin lỗi bạn.
`10)(sqrt5+sqrt6)/(sqrt5-sqrt6)+(sqrt6-sqrt5)/(sqrt6+sqrt5)`
`=(sqrt5+sqrt6)^2/(5-6)+(sqrt6-sqrt5)^2/(6-5)`
`=((sqrt6-sqrt5)^2-(sqrt6+sqrt5)^2)/1`
`=11-2sqrt{30}-11-2sqrt{30}=-4sqrt{30}`
14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)
\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)
\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne49\end{matrix}\right.\)
Ta có : \(\dfrac{7\sqrt{x}-1}{\sqrt{x}-7}-\dfrac{6\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)\left(6\sqrt{x}+1\right)+1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{7x+7\sqrt{x}-\sqrt{x}-1-\left(6x-42\sqrt{x}+\sqrt{x}-7\right)+1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{7x+7\sqrt{x}-\sqrt{x}-1-6x+42\sqrt{x}-\sqrt{x}+7+1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-8\sqrt{x}+7}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-7\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
19) Ta có: \(\dfrac{7\sqrt{x}-1}{\sqrt{x}-7}-\dfrac{6\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{1-55\sqrt{x}}{x-6\sqrt{x}-7}\)
\(=\dfrac{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(6\sqrt{x}+1\right)\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}+\dfrac{1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{7x+7\sqrt{x}-\sqrt{x}-1-6x+42\sqrt{x}-\sqrt{x}+7+1-55\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-8\sqrt{x}+7}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
`1)1/(1-sqrt2)-1/(1+sqrt2)=(1+sqrt2)/(1-2)-(sqrt2-1)/(2-1)=-(1+sqrt2)-sqrt2+1=-2sqrt2` $\\$ `2)1/(1+sqrt5)+1/(sqrt5-1)=(sqrt5-1)/(5-1)+(sqrt5+1)/(5-1)=(sqrt5-1+sqrt5+1)/4=sqrt5/2` $\\$ `3)4/(1-sqrt3)+(sqrt3-1)/(sqrt3+1)=(4(sqrt3+1))/(1-3)+(sqrt3-1)^2/(3-1)=(-4(sqrt3+1)+4-2sqrt3)/2=-3sqrt3` $\\$ `4)(2-sqrt5)/(2+sqrt5)+(sqrt5+2)/(sqrt5-2)=(2-sqrt5)^2/(4-5)+(sqrt5+2)^2/(5-4)=-(2-sqrt5)^2+(sqrt5+2)^2=9+4sqrt5-9+4sqrt5=8sqrt5`
18) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{-\left(1-\sqrt{3}\right)}\)
\(=-2\sqrt{2}\)
`5)(6-sqrt6)/(1-sqrt6)+(6-sqrt6)/sqrt6=(sqrt6(sqrt6-1))/(1-sqrt6)+(sqrt6(sqrt6-1))/sqrt6=-sqrt6+sqrt6-1=-1` $\\$ `6)1/(sqrt2-sqrt3)-1/(sqrt3+sqrt2)=(sqrt2+sqrt3)/(2-3)-(sqrt3-sqrt2)/(3-2)=-(sqrt2+sqrt3)-sqrt3+sqrt2=-2sqrt3` $\\$ `7)1/(sqrt5+sqrt3)-1/(sqrt5-sqrt3)=(sqrt5-sqrt3)/(5-3)-(sqrt5+sqrt3)/(5-3)=(sqrt5-sqrt3-sqrt5-sqrt3)/2=-sqrt3` $\\$ `8)6/(1-sqrt3)-(3sqrt3-3)/(sqrt3+1)=(6(1+sqrt3))/(1-3)-(3(sqrt3-1)^2)/(3-1)=(-6(sqrt3+1)-3(4-2sqrt3))/2=-9`
\(\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(\frac{\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)+\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(\frac{-10x-7\sqrt{x}+12+18x-8}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(\frac{8x-7\sqrt{x}+4}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)
\(\frac{24x-21\sqrt{x}+12+29\sqrt{x}-28}{18x+15\sqrt{x}-18}\)
\(\frac{24x+8\sqrt{x}-16}{18x+15\sqrt{x}-18}\)
\(\frac{24x+24\sqrt{x}-16\sqrt{x}-16}{18x-12\sqrt{x}+27\sqrt{x}-18}\)
\(\frac{24\sqrt{x}\left(\sqrt{x}+1\right)-16\left(\sqrt{x}+1\right)}{6\sqrt{x}\left(3\sqrt{x}-2\right)+9\left(3\sqrt{x}-2\right)}\)
\(\frac{\left(\sqrt{x}+1\right)\left(24\sqrt{x}-16\right)}{\left(3\sqrt{x}-2\right)\left(6\sqrt{x}+9\right)}\)
\(\frac{\left(\sqrt{x}+1\right).8\left(3\sqrt{x}-2\right)}{\left(3\sqrt{x}-2\right)\left(6\sqrt{x}+9\right)}\)
\(\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)