a | bb | cc | a\times\left(b+c\right)a×(b+c) | a\times b+a\times ca×b+a×c |
2 | 5 | 3 | ||
7 | 5 | 2 | ||
4 | 6 | 3 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a (a + b + c) = -12 (1)
b(a + b+ c) = 18 (2)
c(a + b + c) = 30 (3)
Từ (1); (2); (3) cộng vế cho vế
=> a(a + b + c) + b(a + b+ c) + c(a +b + c) = -12 + 18 + 30
=> (a + b + c)(a + b + c) = 36
=> (a + b + c)2 = 62
=> \(\orbr{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Thay \(a+b+c=\pm6\) vào (1) ; (2) ;(3):
+) a(a + b + c) = -12 => \(\orbr{\begin{cases}a.6=-12\\a.\left(-6\right)=-12\end{cases}}\) => \(\orbr{\begin{cases}a=-12:6=-2\\a=-12:\left(-6\right)=2\end{cases}}\)
+) b(a + b + c) = 18 => \(\orbr{\begin{cases}b.6=18\\b.\left(-6\right)=18\end{cases}}\) => \(\orbr{\begin{cases}b=18:6=3\\b=18:\left(-6\right)=-3\end{cases}}\)
+) c(a + b+ c) = 30 => \(\orbr{\begin{cases}c.6=30\\c.\left(-6\right)=30\end{cases}}\) => \(\orbr{\begin{cases}c=30:6=5\\c=30:\left(-6\right)=-5\end{cases}}\)
Vậy ...
Ta có: a(a + b + c) = -12
b(a + b + c) = 18
c(a + b + c) = 30
=> a(a + b + c) + b(a + b + c) + c(a + b + c) = -12 + 18 + 30
=> (a + b + c)2 = 36
=>\(\orbr{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)=> \(\orbr{\begin{cases}a=-2;b=3;c=5\\a=2;b=-3;c=-5\end{cases}}\)
Vậy: a = 2; -2
b = 3; -3
c = 5; -5
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)
\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)
\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)
\(Cauchy-Schwarz:\)
\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)
\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)
\(AM-GM:\)
\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)
\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Lời giải khác:
Áp dụng BĐT AM-GM:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)
\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)
\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)
b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)
=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)
Cách khác: Áp dụng BĐT AM-GM ta có:
\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)
\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)
Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)
\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)
Còn tỷ tỷ cách đây cần thì IB nhé !!
Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Thật vậy ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)
\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)
Đẳng thức xảy ra khi a=b=c=1/3