K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

Vì ( x + 1 )2 ≥ 0 ∀ x ; ( y - 1/3 )2 ≥ 0 ∀ y

=> ( x + 1 )2 + ( y - 1/3 )2 - 10 ≥ -10 ∀ x,y

hay C ≥ -10 ∀ x,y . Dấu "=" xảy ra <=> x = -1 ; y = 1/3

Vậy MinC = -10

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?