K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

a,=>2^x.4=16=>2^x=4=>x=2

b,=>(3x-2)^2=1/4=>3x-2=1/2=>3x=5/2=>x=5/6

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

11 tháng 11 2018

\(2^{x+2}-3.2^x=16\)

=> \(2^x.2^2-3.2^x=16\)

=> \(2^x.\left(2^2-3\right)=16\)

=> \(2^x.1=2^4\)

=> x = 4

\(\left(\frac{1}{5}-\frac{3}{2}x\right)^2=\frac{9}{4}\)

=> \(\left(\frac{1}{5}-\frac{3}{2}x\right)^2=\left(\frac{3}{2}\right)^2\)

=> \(\orbr{\begin{cases}\frac{1}{5}-\frac{3}{2}x=\frac{3}{2}\\\frac{1}{5}-\frac{3}{2}x=-\frac{3}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x=\frac{1}{5}-\frac{3}{2}\\\frac{3}{2}x=\frac{1}{5}+\frac{3}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x=-\frac{13}{10}\\\frac{3}{2}x=\frac{17}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{-13}{15}\\x=\frac{17}{15}\end{cases}}\)

26 tháng 9 2015

a) \(-0,6^0+\frac{1}{2}.2-3x=-\frac{1}{4}\)

 

\(\Leftrightarrow-1+1-3x=-\frac{1}{4}\Leftrightarrow-3x=-\frac{1}{4}\Leftrightarrow3x=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}:3=\frac{1}{12}\)

 

b)\(2^{x-2}+22=3.2^x\Leftrightarrow3.2^x-2^{x-2}=22\Leftrightarrow2^{x-2}\left(3.2^2-1\right)=22\)

\(\Leftrightarrow2^{x-2}.11=22\Leftrightarrow2^{x-2}=2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

c) \(\left(x-1\right)^2=\sqrt{\left(-\frac{9}{16}\right)^2}\Leftrightarrow\left(x-1\right)^2=\frac{9}{16}\Leftrightarrow\left(x-1\right)^2=\left(\frac{3}{4}\right)^2\)

TH1: x - 1 = 3/4 => x = 3/4 + 1  => x = 7/4

Th2: x - 1 = - 3/4 => x  = -3/4 +1 => x = 1/4

d) \(\Leftrightarrow\sqrt{x^2+2}=12-5=7\Leftrightarrow x^2+2=7^2\Leftrightarrow x^2=49-2\Leftrightarrow x^2=47\)

\(x=\sqrt{47};x=-\sqrt{47}\)

a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\dfrac{10}{3}\)

c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)

\(\Leftrightarrow17x=17\)

hay x=1