Tìm x biết :
\(\left(x^2-3\right).\left(x^2-36\right)\le0\)
Giúp với =v
Cảm ơn nhiều ~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^2-3\right).\left(x^2-36\right)\le0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2-3\ge0\\x^2-36\le0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\ge3\\x^2\le36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge\sqrt{3}ho\text{ặc}x\le-\sqrt{3}\\x\le6ho\text{ặc}x\ge-6\end{cases}}}\)
\(\orbr{\begin{cases}x^2-3\le0\\x^2-36\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\le3\\x^2\ge36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\le\sqrt{3}ho\text{ặc}x\ge-\sqrt{3}\\x\ge6ho\text{ặc}x\le-6\end{cases}}}\)
KL:................................................................................................................
( x^2 - 3 )( x^2 - 36 ) \(\le0\)
TH1 : ( x^2 - 3 )( x^2 - 36 ) = 0
=> x^2 - 3 = 0 hoac x^2 - 36 = 0
=> x^2 = 3 hoac x^2 = 36
=> x = \(\sqrt{3}\)hoac bang 6 , -6
TH2 : ( x^2 - 3 )( x^2 - 36 ) < 0
=> x^2 - 3 am va x^2 - 36 duong hoac x^2 - 36 am va x^2 - 3 duong
TH x^2 - 3 am ( 1 ) va x^2 - 36 duong ( 2 )
Xet ( 1 ) thi :
=> x^2 < 2
=> x thuoc 1,0,-1
Nhung de x^2 - 36 duong ( 2 ) thi IxI > 6
Ma 1,0,-1 deu < 6
=> x \(\varnothing\)
TH x^2 - 36 am ( 1 ) va x^2 - 3 duong ( 2 )
Xet ( 1 ) thi :
I x I < 6
=> x \(\in\left\{5,4,3,2,1,0,-1,-2,-3,-4,-5\right\}\)
Xet ( 2 ) thi :
I x I > 2
=> x thuoc { 5,4,3,-3,-4,-5 }
Vay x \(\in\left\{\sqrt{3},6,5,4,3,-3,-4,-5,-6\right\}\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+x-6\right)\le0\)
\(\Leftrightarrow x\left(x-2\right)^2\left(x+3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\-3\le x\le0\end{matrix}\right.\)