tìm nghiệm nguyên x,y của pt: \(x^2+xy+y^2=x^2y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ
x2 + y2 + xy = x2y2
x2 + xy + y2 - x2y2 = 0
4x2 + 4xy + 4y2 - 4x2y2 = 0
( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1 ( thêm - 1 )
( 2x + 2y )2 - ( 2xy + 1 )2 = -1
( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1
\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)
suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }
SKT-STT giúp mk bài tập này vs
Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\) có giá trị là số nguyên
PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)
Với y=5 thì ta không tìm được x thỏa mãn
Với \(y\ne5\), ta có
\(\Delta=-3y^2+26-19\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)
Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
=> 5x2 + 5xy + 5y2 = 7x + 14y
=> 5x2 + 5xy - 7x + 5y2 - 14y = 0
=> 5x2 + (5y -7).x + (5y2 - 14y) = 0 (*)
Tính \(\Delta\) = (5y - 7)2 - 4.5.(5y2 - 14y) = -75y2 + 210y + 49
Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49 = k2 ( với k nguyên)
=> - 3. (25y2 - 2.5y.7 + 49) + 196 = k2
=> -3.(5y - 7)2 + 196 = k2
=> 3.(5y - 7)2 + k2 = 196 => 3. (5y-7)2 \(\le\) 196 => (5y - 7)2 \(\le\) 66 =>-8 \(\le\) 5y - 7 \(\le\) 8
=> -1/5 \(\le\) y \(\le\) 3
y nguyên nên y có thể bằng 0; 1;2;3
Với tưng giá trị của y ta thay vào (*) => x
Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu
\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp
\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)
+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)
+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)
Phương trình đã cho tương đương với: 2x2 + 2y2 - 2xy-2x-2y=0 (=) (x-y)2+(x-1)2+(y-1)2=2 (1)
Không mất tính tổng quát giả sử x>= y. Do x;y nguyên nên x-y=0 hoặc x-y=1
*) Xét x-y=0 =) (1) (=) 2(x-1)2=2 (=) x=y=2 (t/m)
*) Xét x-y=1 (=) x-1=y =) (1) (=) 1+y2+(y2-2y+1)=2 (=) 2y2-2y=0 (=) y=0;x=1 hoặc y=1;x=2
Vậy các cặp nghiệm (x;y) của phương trình là (2;2);(0;1);(1;0);(1;2);(2;1)
Thêm xy vào 2 vế:
\(x^2+2xy+y^2=x^2y^2+xy\)(1)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0
xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)
xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)
vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)