Cho tam giác ABC vuông cân ở A, D thuộc AB, E thuộc AC sao cho AD=AE. Qua A và D vẽ các đường thẳng vuông góc với BE cắt BC thứ tự tại I và K
a, KD giao với CA tại H, Chứng minh AH=AB
b, Chứng minh KI=IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=AE
=> tam giác ABE vuông cân
=> AG đồng thời là đường phân giác
=> GB/GC=AB/AC (t/c đường phân giác)(1)
tc ΔABC~ ΔHAC(g.g)
=> AB/AC=HA/HC (t/c...)(2)
từ 1 và 2 => GB/GC=HA/HC
GB/(GB+GC)=HA/(HA+HC)(t/c của dãy tỉ số = nhau)
GB/BC=HA/(HA+HC)
mà HA=HD
=>GB/GC=HD(HA+HC) (ĐPCM)
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK
Bạn gì đó giải đc chưa ....cho mình pjk cách làm chi tiết với nhé !!!!