tìm x,y
4/x+1 = 2/y-2 = 3/z+2
biết x . y . z = 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2 x + 1 ) ( 3 y − 2 ) = − 55
Suy ra ( 2 x + 1 ) v à ( 3 y − 2 ) ∈ Ư ( - 55 ) = 1 ; − 1 ; 5 ; − 5 ; 11 ; − 11 ; 55 ; − 55
Khi đó ta có bảng sau:
b) ( x − 3 ) ( 2 y + 1 ) = 7
Suy ra ( x − 3 ) và ( 2 y + 1 ) ∈ Ư ( 7 ) = 1 ; − 1 ; 7 ; − 7
Khi đó ta có bảng sau
c) y ( y 4 + 12 ) = − 5
Suy ra ( y 4 + 12 ) ∈ Ư ( - 5 ) = 1 ; − 1 ; 5 ; − 5
Vì y 4 ≥ 0 ⇒ y 4 + 12 ≥ 12 ⇒ không có giá trị của y thỏa mãn ycbt.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{25}{5}=5\)
Do đó: x=40; y=60; z=75
Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)
\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)
\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)
\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)
\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)
\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)
\(=-33+4\left(1+1+1\right)^2=-33+36=3\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(P_{min}=3\)khi \(x=y=z=1\)
Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.
Thay các giá trị vào đa thức, ta có:
x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.
Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:
f'(a) = 2a + 4a^3
Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:
2a + 4a^3 = 0 a(1 + 2a^2) = 0
Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.
Ta tính giá trị của đa thức tại các điểm cực tiểu:
f(0) = 0^2 + 0^4 = 0
f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536
f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536
Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.
\(\left(x-15\right)\left(y+12\right)\left(z-3\right)=0\)
=>\(\left[{}\begin{matrix}x-15=0\\y+12=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\y=-12\\z=3\end{matrix}\right.\)
TH1: x=15
x+1=y+2=z+3
=>y+2=z+3=15+1=16
=>y=16-2=14;z=16-3=13
TH2: y=-12
x+1=y+2=z+3
=>x+1=z+3=-12+2=-10
=>x=-10-1=-11; z=-10-3=-13
TH3: z=3
x+1=y+2=z+3
=>x+1=y+2=3+3=6
=>x=6-1=5; y=6-2=4