K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

a: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(\dfrac{2n^3}{n^3}-\dfrac{1}{n^3}\right)\left(\dfrac{n^2+n+1}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(2-\dfrac{1}{n^3}\right)\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}\)

\(=\dfrac{1}{2\cdot1}=\dfrac{1}{2}\)

b: \(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{n\left(1+\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{1+\dfrac{2}{n}}=\dfrac{\sqrt{1-0+0}}{1+0}=\dfrac{1}{1}=1\)

c: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{n}{n^2}-\dfrac{\sqrt[3]{n^2-n^3}}{n^2}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{1}{n}-\sqrt[3]{\dfrac{1}{n^4}-\dfrac{1}{n^3}}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}=\dfrac{0}{1}=0\)

d: \(\lim\limits_{n\rightarrow+\infty}\left(n-\sqrt{n^2+n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2-n^2-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-1-\dfrac{1}{n}}{1+\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}}=-\dfrac{1}{1+1}=-\dfrac{1}{2}\)

24 tháng 11 2023

\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{\sqrt[3]{\left[n^3\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)\right]^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

b: \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}=\dfrac{2}{\sqrt{1}+\sqrt{1}}=1\)

27 tháng 8 2021

`a)5/9:(1/11-5/22)+5/9:(1/15-2/3)`

`=5/9:(2/22-5/22)+5/9:(1/15-10/15)`

`=5/9:(-3)/22+5/9:(-9)/15`

`=5/9*(-22)/3+5/9*(-5)/3`

`=5/9*(-22/3+(-5)/3)`

`=5/9*(-9)=-5`

27 tháng 8 2021

Thanks bn nhìu nha >.<yeu

5 tháng 2 2022

\(\dfrac{53}{84}\)

\(\dfrac{20}{63}\)

\(\dfrac{1}{60}\)

a: \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{4}=\dfrac{56}{84}+\dfrac{60}{84}-\dfrac{63}{84}=\dfrac{53}{84}\)

b: \(=\dfrac{3}{7}-\dfrac{1}{9}=\dfrac{27}{63}-\dfrac{7}{63}=\dfrac{20}{63}\)

c: \(=\dfrac{2}{5}\cdot\dfrac{1}{8}\cdot\dfrac{1}{3}=\dfrac{2}{8}\cdot\dfrac{1}{15}=\dfrac{1}{60}\)

31 tháng 1 2021

a) 1-3+5-7+9-12+15-18

= (1+ 9) - (3+7) + (5+15) - (12+18) 

= 10 - 10 + 20 - 30 = -10.

b) (-2)+5-7+9-11+13-15+19-21

= 5 - 11 - 2 -2 = 5 - (11+2+2)

= 5 - 15 = -10 

 

Bài 1: 

a) Ta có: 1-3+5-7+9-12+15-18

=(1+9)-(3+7)+(5+15)-(12+18)

=10-10+20-30

=-10

b) Ta có: \(\left(-2\right)+5-7+9-11+13-15+19-21\)

\(=3+2+2+4-21\)

\(=5+6-21\)

=11-21=-10

16 tháng 9 2023

a) `1/9-0,3. 5/9+1/3`

`=1/9-3/10 . 5/9+1/3`

`=1/9-15/90+1/3`

`=1/9-1/6+1/3`

`=2/18-3/18+6/18`

`=5/18`

b) `(-2/3)^2+1/6-(-0,5)^3`

`=4/9+1/6-(-0,125)`

`=4/9+1/6+0,125`

`=4/9+1/6+1/8`

`=32/72+12/72+9/72`

`=53/72`

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

`-7/25 + (-8)/25`

`= (-7 - 8)/25`

`= -15/25`

`= -3/5`

`b)`

`6/13 + (-15)/39`

`= 18/39 + (-15)/39`

`= (18 - 15)/39`

`= 3/39`

`= 1/13`

`c)`

`5/7 + 4/(-14)`

`= 10/14 + (-4)/14`

`= (10 - 4)/14`

`= 6/14`

`= 3/7`

`d)`

`-8/18 + (-15)/27`

`= -4/9 + (-5)/9`

`= (-4-5)/9`

`= -9/9 = -1`

20 tháng 7 2023

`2,`

`a)`

`3/5 + (-7)/4`

`= 12/20 + (-35)/20`

`= (12 - 35)/20`

`=-23/20`

`b)`

`(-2) + (-5)/8`

`= (-16)/8 + (-5)/8`

`= (-16 - 5)/8`

`= -21/8`

`c)`

`1/8 + (-5)/9`

`= 9/72 + (-40)/72`

`= (9-40)/72`

`= -31/72`

`d)`

`6/13 + (-14)/39`

`= 18/39 + (-14)/39`

`= (18 - 14)/39`

`= 4/39`

`e)`

`(-18)/24 + 15/21`

`= (-3)/4 + 5/7`

`= (-21)/28 + 20/28`

`= (-21 + 20)/28`

`= -1/28`

Bài 3: 

a: Ta có: \(3x^2=75\)

\(\Leftrightarrow x^2=25\)

hay \(x\in\left\{5;-5\right\}\)

b: Ta có: \(2x^3=54\)

\(\Leftrightarrow x^3=27\)

hay x=3

Bài 2: 

b: Ta có: \(30-3\cdot2^n=24\)

\(\Leftrightarrow3\cdot2^n=6\)

\(\Leftrightarrow2^n=2\)

hay n=1

c: Ta có: \(40-5\cdot2^n=20\)

\(\Leftrightarrow5\cdot2^n=20\)

\(\Leftrightarrow2^n=4\)

hay n=2

d: Ta có: \(3\cdot2^n+2^n=16\)

\(\Leftrightarrow2^n\cdot4=16\)

\(\Leftrightarrow2^n=4\)

hay n=2