K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

a,3x-6\(\sqrt{x}\)-6

=2(x-3\(\sqrt{x}\)-3)

=2(x-2\(\sqrt{x}\).\(\frac{3}{2}\)+\(\frac{9}{4}\)-\(\frac{21}{4}\))

=2[(x-\(\frac{3}{2}\))2-\(\frac{21}{4}\)]

2(x-\(\frac{3+\sqrt{21}}{2}\))(x-\(\frac{3-\sqrt{21}}{2}\))

b,x+4\(\sqrt{x}\)+3

=x+3\(\sqrt{x}\)+\(\sqrt{x}\)+3

=\(\sqrt{x}\)(\(\sqrt{x}\)+3) +(\(\sqrt{x}\)+3)

=(\(\sqrt{x}\)+1)(\(\sqrt{x}\)+3)

c,x-5\(\sqrt{x}\)-6

=x-6\(\sqrt{x}\)+\(\sqrt{x}\)-6

=\(\sqrt{x}\)(\(\sqrt{x}\)-6)+(\(\sqrt{x}\)-6)

=(\(\sqrt{x}\)+1)(\(\sqrt{x}\)-6)

d,x+5\(\sqrt{x}\)-14

=x+7\(\sqrt{x}\)-2\(\sqrt{x}\)-14

=\(\sqrt{x}\)(\(\sqrt{x}\)+7)-2(\(\sqrt{x}\)+7)

=(\(\sqrt{x}\)-2)(\(\sqrt{x}\)+7)

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

a.

\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)

\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)

\(=-a^4b^4(3a+4b)^2\)

b.

$x^3-6x^2y+12xy^2-8x^3$

$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$

c.

$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$

$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$

$=(x+\frac{1}{2})^3$

a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\cdot\left(4b+3a\right)^2\)

b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)

\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(x-2y\right)^3\)

c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=\left(x+\dfrac{1}{2}\right)^3\)

DD
7 tháng 7 2021

\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)

\(=4\left[\left(x+5\right)\left(x+12\right)\right]\left[\left(x+6\right)\left(x+10\right)\right]-3x^2\)

\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)

\(=\left(2x^2+34x+120\right)\left(2x^2+32x+60\right)-3x^2\)

\(=\left(2x^2+33x+120\right)^2-x^2-3x^2\)

\(=\left(2x^2+33x+120-2x\right)\left(2x^2+33x+120+2x\right)\)

\(=\left(2x+15\right)\left(x+8\right)\left(2x^2+35x+120\right)\)

10 tháng 7 2015

\(4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)

\(=2\left(x^2+60+17x\right).2\left(x^2+60+16x\right)-3x^2\)

\(=\left(2x^2+120+33x+x\right)\left(2x^2+120+33x-x\right)-3x^2\)

\(=\left(2x^2+120+33x\right)^2-x^2-3x^2\)

\(=\left(2x^2+120+33x\right)^2-4x^2\)

\(=\left(2x^2+120+33x+2x\right)\left(2x^2+120+33x-2x\right)\)

\(=\left(2x^2+35x+120\right)\left(2x^2+31x+120\right)\)

\(=\left(2x^2+35x+120\right)\left(x+8\right)\left(2x+15\right)\)

14 tháng 11 2019

a) đề thế này\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(x^2+7x+11=t\)vào (1) ta được:

\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:
\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

b) Phân tích sẵn rồi còn phân tích gì nưa=))

14 tháng 11 2019

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)( Làm đề theo Lê Tài Bảo Châu )

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left[\left(x^2+7x+11\right)-1\right]\left[\left(x^2+7x+11\right)+1\right]-24\)

\(=\left(x^2+7x+11\right)^2-1-24\)

\(=\left(x^2+7x+11\right)^2-25\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

22 tháng 11 2023

a: \(2y\left(x+2\right)-3x-6\)

\(=2y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(2y-3\right)\)

b: \(3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(x+4\right)\left(3-x\right)\)

c: \(2\left(x+5\right)-x^2-4x\)

\(=2x+10-x^2-4x\)

\(=-x^2-2x+10\)

\(=-x^2-2x-1+11\)

\(=11-\left(x^2+2x+1\right)\)

\(=11-\left(x+1\right)^2\)

\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)

d: \(x^2+6x-3x-18\)

\(=\left(x^2+6x\right)-\left(3x+18\right)\)

\(=x\left(x+6\right)-3\left(x+6\right)\)

\(=\left(x+6\right)\left(x-3\right)\)

21 tháng 8 2015

 

4( x+5) ( x+6) (x+10) ( x+12) -3x2

=4(x+5)(x+12)(x+6)(x+10)-3x2

=4.(x2+17x+60)(x2+16x+60)-3x2

Đặt t=x2+16x+60 ta được:

4.(t+x).t-3x2

=4t2+4tx-3x2

=4t2-2tx+6tx-3x2

=2t.(2t-x)+3x.(2t-x)

=(2t-x)(2t+3x)

thay t=x2+16x+60 ta được:

[2.(x2+16x+ 60)-x][2.(x2+16x+60)+3x]

=(2x2+32x+120-x)(2x2+32x+120+3x)

=(2x2+31x+120)(2x2+35x+120)

=(2x2+16x+15x+120)(2x2+35x+120)

=[2x.(x+8)+15.(x+8)](2x2+35x+120)

=(x+8)(2x+15)(2x2+35x+120)

4 tháng 12 2016

4( x+5) ( x+6) (x+10) ( x+12) -3x 2

=4(x+5)(x+12)(x+6)(x+10)-3x 2

=4.(x 2+17x+60)(x 2+16x+60)-3x 2

Đặt t=x 2+16x+60 ta được: 4.(t+x).t-3x 2

=4t 2+4tx-3x 2

=4t 2 -2tx+6tx-3x 2 

=2t.(2t-x)+3x.(2t-x)

=(2t-x)(2t+3x)

thay t=x 2+16x+60 ta được: [2.(x 2+16x+ 60)-x][2.(x 2+16x+60)+3x]

=(2x 2+32x+120-x)(2x 2+32x+120+3x)

=(2x 2+31x+120)(2x 2+35x+120)

=(2x 2+16x+15x+120)(2x 2+35x+120)

=[2x.(x+8)+15.(x+8)](2x 2+35x+120)

=(x+8)(2x+15)(2x 2+35x+120)

13 tháng 8 2021

Đây nè bạn.

undefined

13 tháng 8 2021

a, \(x^2-6=x^2-\sqrt{6^2}=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

b, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\sqrt{3}=\left(x+\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

c, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\sqrt{5}=\left(x-\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x-\sqrt{5}\right)\)