K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(A=\left(-2\right)\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{214}\right)\)

\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{215}{214}=215\)

\(B=\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{299}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{300}{299}=\frac{300}{2}=150\)

\(C=-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{333333}{424242}\right)\)

\(=-\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(=-\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(=-\frac{231}{4}.\frac{4}{21}=-11\)

15 tháng 1 2017

3/4x8/9x15/16x24/25x....x(n^2-1)/n^2)

=(1x2x3x4x...x(n-1))x(3x4x5x...x(n+1)):(1x2x3x4x...x n)^2

=(n+1)/2n)

19 tháng 6 2019

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

19 tháng 6 2019

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.

15 tháng 1 2017

Ta có công thức :

\(1-\frac{1}{k^2}=\frac{k^2-1^2}{k^2}=\frac{\left(k+1\right)\left(k-1\right)}{k^2}\)

Áp dụng công thức trên ta được :

\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)

\(=\frac{2^2-1^2}{2^2}.\frac{3^2-1^2}{3^2}.\frac{4^2-1^2}{4^2}....\frac{n^2-1^2}{n^2}\)

\(=\frac{\left(2+1\right)\left(2-1\right)}{2.2}.\frac{\left(3+1\right)\left(3-1\right)}{3.3}.\frac{\left(4+1\right)\left(4-1\right)}{4.4}...\frac{\left(n+1\right)\left(n-1\right)}{n.n}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{\left(n+1\right)\left(n-1\right)}{n.n}\)

\(=\frac{\left[1.2.3.....\left(n+1\right)\right].\left[3.4.5...\left(n-1\right)\right]}{\left(2.3.4....n\right)\left(2.3.4....n\right)}\)

\(=\left(n+1\right).\frac{1}{2n}=\frac{n+1}{2n}\)

15 tháng 1 2017

mới lớp 6 mà giải đc toan lớp 8 , anh đây thuông minh quá ))

14 tháng 12 2018

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)

  \(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{n^2-1}{n^2}\right)\)

\(=\text{[}\frac{\left(2-1\right)\left(2+1\right)}{2^2}\text{]}.\text{[}\frac{\left(3-1\right)\left(3+1\right)}{3^2}\text{]}.\text{[}\frac{\left(4-1\right)\left(4+1\right)}{4^2}\text{]}...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)

\(=\left(\frac{1.3}{2^2}\right).\left(\frac{2.4}{3^2}\right).\left(\frac{3.5}{4^2}\right)...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)

\(=\frac{\text{[}1.2.3...\left(n-1\right)\text{]}.\text{[}3.4.5...\left(n+1\right)\text{]}}{\text{[}2.3.4...n\text{]}.\text{[}2.3.4...n\text{]}}\)

\(=\frac{1}{n}.\frac{n+1}{2}\)

\(=\frac{n+1}{2n}\)