giải phương trình :
x^4 + 2x^3 + 8x^2 + 10x + 15
típ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+8x^2+10x+15=0\)
\(\Leftrightarrow\left(x^4+5x^2\right)+\left(2x^3+10x\right)+\left(3x^2+15\right)=0\)
\(\Leftrightarrow x^2\left(x^2+5\right)+2x\left(x^2+5\right)+3\left(x^2+5\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x+3\right)=0\)
mà ta có: \(x^2+5\ge5>0;x^2+2x+3=\left(x+1\right)^2+1\ge1>0\)
nên suy ra phương trình vô nghiệm.
\(x^4+2x^3+8x^2+10x+15=\left(x^4+2x^3+x^2\right)+\left(7x^2+10x+15\right)\)
\(\Leftrightarrow\left(x^2+x\right)^2+2.4.\left(x^2+x\right)+16=x^2-2x+1\\ \)
\(\left(x^2+x+4\right)^2=\left(x-1\right)^2\)
\(\left[\begin{matrix}x^2+x+4=x-1\left(1\right)\\x^2+x+4=1-x\left(2\right)\end{matrix}\right.\)
\(\left[\begin{matrix}\left(1\right)\Leftrightarrow x^2=-5\\\left(x+1\right)^2=-3\end{matrix}\right.\)Vo. No
k,\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
giúp mk câu k nhé đề bài như trên
b: \(\Leftrightarrow4x+8-9=4x-4\)
=>-1=-4(loại)
d: \(\Leftrightarrow3\left(x-2\right)+2\left(x+1\right)=8x\)
=>8x=3x-6+2x+2=5x-4
=>3x=-4
=>x=-4/3
f: \(\Leftrightarrow3\left(x+2\right)+4\left(2x-3\right)=2\left(x-12\right)\)
=>3x+6+8x-12=2x-24
=>11x-6=2x-24
=>9x=-18
=>x=-2
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
ĐKXĐ: \(x\ne0\)
Phương trình tương đương:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)
Đặt \(4x-10+\dfrac{7}{x}=t\)
\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)
\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
(x^4+2x^3+3x^2)+(5x^2+10x+15)=0
x^2(x^2+2x+3)+5(x^2+2x+3)=0
(x^2+2x+3)(x^2+5)=0
x^2+2x+3=0 hoặc x^2+5=0
Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.
x^2+5>0 suy ra pt vô nghiệm.
Vậy pt đã cho vô nghiệm.
gg.com hí hí