cmr: x^2+6x+1>=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)^2+1>0\) mọi x
p/s: chúc bạn hk tốt
\(x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)+1>0\)
Code : Breacker
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
Bài 1:
a, \(x^2-6x+10=x^2-3x-3x+9+1\)
\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy................... (đpcm)
b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)\)
\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)
\(=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)
Vậy............... (đpcm)
Chúc bạn học tốt!!!
Bài 2:
a, \(P=x^2-2x+5\)
\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\)ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x=1\)
Vậy........
b, Xem lại đề.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x;y\in R\)ta có:
\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).
Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy............
Chúc bạn học tốt!!!
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
Bài 1 :
a) \(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )
\(\rightarrowđpcm\)
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)
\(\rightarrowđpcm\)
Bài 2:
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(P=\left(x-1\right)^2+4\ge4\)
Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MIN_P=4\) khi x = 1
c, \(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)
1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)
\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)
sai đề ròi bạn ơi
mik nghĩ vậy...
\(x^2+6x+1\ge10\)
\(\Rightarrow x^2+6x\ge9\)
\(\Rightarrow x\left(x+6\right)\ge9\)
\(x^2+6x+9\ge18\)
\(\Rightarrow\frac{x^2+6x+9}{18}\ge1\)
\(\Leftrightarrow\frac{1}{18}\left(x+3\right)^2\ge1\)
Theo bạn dưới nói đề sai thì có vẻ đúng đấy bạn