K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Ta có :

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)=0\)

17 tháng 7 2018

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

\(M=a^3+b^3+c.\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+ca^2+cb^2-abc\)

\(M=a^2.\left(a+c\right)+b^2.\left(b+c\right)-abc\)

\(M=a^2.\left(-b\right)+b^2.\left(-a\right)\)

\(M=-a^2b-b^2a\)

\(M=-ab.\left(a+b\right)\)

\(M=-ab.\left(-c\right)\)

\(M=abc\)

Tham khảo nhé~

3 tháng 8 2017

ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b 

ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)

M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)

M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)

M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)

M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)

M=-1-1-1=-3

Vậy với a+b+c=0 thì M=-3

8 tháng 11 2021

\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

23 tháng 8 2016

\(A^3+B^3+A^2C+B^2C-ABC\)

\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)

\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)

\(=\left(A^2-AB+B^2\right).0\)

\(=o\)

26 tháng 10 2016

là 0 chứ rút gọn gì nữa

10 tháng 3 2018

\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)

\(=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)

\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)

\(=2a^3\)

4 tháng 10 2019

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=-ba^2-ab^2-abc\)

\(=-ab\left(a+b+c\right)=0\)

9 tháng 3 2022

chịu