K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

a) 220= 22.10= ( 22)10=410

330= 33.10=(33)10= 2710

Vì 410 < 2710

=> 220 < 330

b) 2505= 25.101= (25)101= 32101

202= 52.101= (52)101= 25101

Vì 32101>25101

=> 2505>5202

16 tháng 7 2018

\(a,2^{20}=\left(2^2\right)^{10}=4^{10}\)(1)

\(3^{30}=\left(3^3\right)^{10}=27^{10}\)(2)

Từ (1) và (2)

\(\Rightarrow3^{30}>2^{20}\)

\(b,2^{505}=\left(2^5\right)^{101}=32^{101}\)(1)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)(2)

Từ(1) và (2)

\(2^{505}>5^{202}\)

29 tháng 8 2021

a,35+55=90 nên sin 35=cos 55

b,12+78=90 nên tan 12 =cot 78

tik mik nha

a: \(\sin35^0=\cos55^0\)

b: \(\tan12^0=\cot78^0\)

25 tháng 8 2021

a) 0,(26)<0,261

b) 0,15>0,14(9)

a: 0,(26)<0,261

b: 0,15>0,14(9)

9 tháng 2 2022

a)

\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)

b)

\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)

c)

\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)

12 tháng 10 2021

\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)

12 tháng 10 2021

C1: $\sqrt{28}=\sqrt{4.7}=2\sqrt 7$

Ta có: $3>2$

$\Leftrightarrow 3\sqrt 7>3\sqrt 7$ hay $3\sqrt 7>\sqrt{28}$

C2: $3\sqrt{7}=\sqrt{63}$

Ta có: $63>28$

$\Leftrightarrow\sqrt{63}>\sqrt{28}$ hay $3\sqrt 7>\sqrt{28}$

9 tháng 2 2022

a <

b <

c <

9 tháng 2 2022

a)

−2/3>5/−8

b)

398/−412<−25/−137

c)

−14/21<60/72

28 tháng 9 2021

a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)

7 tháng 9 2021

\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)

\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)

Bài 2: 

a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)

\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)

\(=-\dfrac{3}{5}\)

b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

hay \(x=\dfrac{3}{4}\)

9 tháng 10 2021

a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!

25 tháng 8 2021

a) Ta có :\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Leftrightarrow2\sqrt{5}< 5\)

b) Ta có : \(\dfrac{16}{9}< 12\Rightarrow\sqrt{\dfrac{16}{9}}< \sqrt{12}\Leftrightarrow\dfrac{1}{3}\cdot\sqrt{16}< \sqrt{12}\)

a: \(2\sqrt{5}=\sqrt{20}\)

\(5=\sqrt{25}\)

mà 20<25

nên \(2\sqrt{5}< 5\)

b: \(\dfrac{1}{3}\cdot\sqrt{16}=\sqrt{\dfrac{1}{9}\cdot16}=\sqrt{\dfrac{16}{9}}\)

\(\sqrt{12}=\sqrt{\dfrac{108}{9}}\)

mà 16<9

nên \(\dfrac{1}{3}\sqrt{16}< \sqrt{12}\)