a. Chứng minh rằng abcabc chia hết chho 7 ; 11; 13
Giải ra nha mấy chế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích số. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: a b c a b c ¯ = 1000 a b c ¯ + a b c ¯ = 1001 a b c ¯ Vì 1001 ⋮ 7 ⇒ 1001 a b c ¯ ⋮ 7 ⇒ a b c a b c ¯ ⋮ 7 |
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a)
abcabc=abc.1001
Mà 1001 chia hết cho cả 7 ;11và 13
=>abc.1001 chia hết cho 7;11;13
Hay abcabc chia hết cho 7;11;13
Vậy............................
b)
abcdeg=abc.1000+deg (1)
Thay abc=2.deg vào (1) ta có :
deg.2.1000+deg
=deg.2001
Mà 2001 cùng chia hết ch0 23 và 29
=>deg.2001 chia hết cho cả 23 và 29
Hay abcdeg chia hết cho 23 và 29
Vậy ......................................
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
Ta có :
abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 7 x 11x13
vậy abcabc là tích của abc x 7 x11x13 => abcabc chia hết cho 7,11,13
Ta có :
abcabc = abc000 + abc
abcabc = abc x 1000 + abc
abcabc = abc x ( 1000 + 1 )
abcabc = abc x 1001
abcabc = abc x 7 x 11 x 13
Vạy số abcabc là tích của abc và 7 , 11 và 13 nên abcabc chia hết cho 7 , 11 , 13
k cho mình nah Nguyễn Thu Hoai