chứng minh A=3+3^2+3^3+....+3^20+3^30. không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+3^2...+3^30 (1)
Nhan 2 ve voi 3 ta duoc :
3A=3+3^2+3^3+...+3^31 (2)
Lay (2)-(1) ta duoc :
2A=1+3^31
2A=1+...7
2A=...8
A=...8:2
A=...4
Vay A khong phai la so chinh phuong
**** nhe
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
Vì 2\(⋮̸\)4
2\(^2\)\(⋮\)4
2\(^{^{ }3⋮}\)4
\(\Rightarrow\)A ko phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2)
Vì 2⋮̸4
2\(^2\)\(⋮\)4
2\(^3\)\(⋮\)4
\(\Rightarrow\)A không phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì sẽ chia hết cho p\(^2\))
ta có 3A=3*(1+3+3^2+3^3+...+3^30)
3A=3+3^2+3^3+3^4+....+3^31
lấy 3A-A=(3+3^2+3^3+3^4+....+3^31)-(1+3+3^2+3^3+3^4+...+3^30)=2A=(3^31-1) vậy A=(3^31-1):2
ta có 3^31-1=34*7+3-1=X17*33-1=Y1*27-1=C7-1=C6
ta có A=C6:2=I3
ta thấy các số có các cs tận cùng bằng 2;3;5;8 ko phải là số chính phương mà A=I3 có tận cùng là 3
vậy A không phải là số chính phương
A=3+3^2+3^3+...+3^20+3^30.
3A=3^2+3^3+3^4+...+3^21+3^31
2A=3^31-3SUY RA a khong phai la so chinh phuong
Ta có A chia hết cho 3
Nếu A là số chính phương thì A chia hết cho 32.Mà A ko chia hết cho 32=>A ko là số chính phương