Rút gọn biểu thức sau :
\(P=\frac{1-\sqrt{x-1}}{\sqrt{x-2\sqrt{x-1}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x>1\)
\(Taco:B=\left(\frac{\sqrt{\sqrt{x}-1}}{\sqrt{\sqrt{x}+1}}+\frac{\sqrt{\sqrt{x}+1}}{\sqrt{\sqrt{x}-1}}\right):\sqrt{\frac{1}{x-1}}\)
\(=\left(\frac{\left(\sqrt{\sqrt{x}-1}\right)^2}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\left(\sqrt{\sqrt{x}+1}\right)^2}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right).\sqrt{x-1}\)
\(=\frac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}.\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=2\sqrt{x}\)
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))
\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)
\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)
\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)
\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)
ĐK : \(x\ge0\) và \(x\ne1\)
\(A=\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}+2}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}+2}\)
dk \(x\ge0.x\ne1\)
\(\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)=\(\frac{\sqrt{x}+1-\left(\sqrt{x}-1\right)-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{2\left(1-\sqrt{x}\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-1}{\sqrt{x}+1}\)
\(C=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{x+1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\frac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}=1\)
ta có \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)=> đk là x > hoặc = 1
với \(\sqrt{x-1}>1=>\left(\sqrt{x-1}-1\right)^2=\sqrt{x-1}-1\)
với \(\sqrt{x-1}< 1=>\left(\sqrt{x-1}-1\right)^2=1-\sqrt{x-1}\)
thay vào P ta có 2 kq là: 1 và -1