cho a,b,c >0 và a+b+c=1/abc.
Tìm GTNN: P= (a+b)(a+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)
\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)
\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)
\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)
A = 3 \(\Leftrightarrow a=b=c=1\)
Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)
\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)
\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)
\("="\Leftrightarrow a=b=c=1\)
Áp dụng BĐT AM - GM dạng ngược ta dễ có:
\(\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{2}{a+b+b+c}=\frac{2}{\left(a+2b+c\right)}\)
Tương tự:
\(\frac{1}{\sqrt{\left(b+c\right)\left(c+a\right)}}\ge\frac{2}{\left(b+2c+a\right)}\frac{1}{\sqrt{\left(c+a\right)\left(a+b\right)}}\ge\frac{2}{2\left(c+2a+b\right)}\)
Khi đó:
\(P\ge2\left(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\right)\)
\(\ge\frac{9}{2\left(a+b+c\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=2
Gáy cach nua.
Chứng minh: \(\Sigma\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)}\)
Theo Holder, cần c.m
\(\frac{3^3}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(c+a\right)+\left(c+a\right)\left(a+b\right)}\ge\frac{81}{4\left(a+b+c\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Done
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
Ta có : abc = 1
<=> a = \(\frac{1}{bc}\)
\(b=\frac{1}{ac}\)
\(c=\frac{1}{ab}\)
Ta có : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)
Áp dụng bđt cô si ta có :
\(\frac{1}{bc}+abc\ge2\sqrt{\frac{abc}{bc}}=2\sqrt{a}\)
\(\frac{1}{ac}+abc\ge2\sqrt{b}\)
\(\frac{1}{ab}+abc\ge2\sqrt{c}\)
Nên : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)\(\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8.1=8\)
Vây Pmin = 8 khi a = b = c = 1
Hai ô tô cùng khởi hành 1 lúc đi từ
A đến B dài 240km, vì mỗi giờ
ô tô thứ 1 đi nhanh hơn ô tô thứ 2 là 12km nên nó đến trước ô tô thứ 2 là 1h40'. Tí
nh vận tốc của mỗi ô tô?