chứng tỏ \(\left(3a+7\right)⋮\left(2a+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a+7⋮2a+1\)
\(\Rightarrow2\left(3a+7\right)⋮2a+1\)
\(\Rightarrow6a+14⋮2a+1\)
\(\Rightarrow6a+3+11⋮2a+1\)
\(\Rightarrow3\left(2a+1\right)+11⋮2a+1\)
\(3\left(2a+1\right)⋮2a+1\)
\(\Rightarrow11⋮2a+1\)
\(\Rightarrow2a+1\inƯ\left(11\right)\)
\(\Rightarrow2a+1\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow2a\in\left\{-2;0;-12;10\right\}\)
\(\Rightarrow a\in\left\{-1;0;-6;5\right\}\)
(3a + 2)(2a - 1) + (3 - a)(6a + 2) - 17(a - 1)
= 6a3 - 3a + 4a - 2 + 18a + 6 - 6a2 - 2a - 17a + 17
= 21
Vậy giá trị biểu thức sau không phụ thuộc vào a (đpcm)
Bạn giải biểu thức trên rồi kết quả kh còn a.
Rồi KL : Biểu thức trên kh phụ thuộc vào a.
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
+ Từ \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow3a-2b=c\) và \(3a-c=2b\)
+ Tương tự ta cũng có \(3b-2c=a\) và \(3b-a=2c\)
Và \(3c-2a=b\); \(3c-b=2a\)
Thay vào P
\(P=\frac{c.a.b}{2.b.2.c.2.a}=\frac{1}{8}\)