tính B= 1/3+1/9+1/18+1/30+...+1/14850
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\)\(\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+...+\frac{1}{14850}\)
\(3A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{4950}\)
\(\frac{1}{2}.3A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\)
\(\frac{3}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(\frac{3}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{3}{2}A=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{99}{100}:\frac{3}{2}=\frac{99.2}{100.3}=\frac{33}{50}\)
Gọi \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}+...+\frac{1}{14950}\)
\(3A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)
\(\frac{1}{2}.3A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(\frac{3}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(\frac{3}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{3}{2}A=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{99}{100}:\frac{3}{2}=\frac{99.2}{100.3}=\frac{33}{50}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)
\(F=\left(\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\right)\)\(-\)\(\left(\frac{25}{50.55}+\frac{25}{55.60}+\frac{25}{60.65}+...+\frac{25}{95.100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)\) - \(5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
\(=\frac{3}{7}.\frac{110}{339}-5.\frac{1}{100}\)
\(=\frac{1}{7}-\frac{1}{20}=\frac{13}{140}\)
= \(\frac{3}{7}\left(\frac{7}{1.8}+\frac{7}{8.15}+...+\frac{7}{106.103}\right)-5\left(\frac{5}{50.55}+\frac{5}{55.60}+...+\frac{5}{95.100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\cdot\frac{112}{113}-5\cdot\frac{1}{100}\)
=\(\frac{48}{113}-\frac{1}{20}\)
=\(\frac{847}{2260}\)
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
b) Đặt B = A : C ta có:
\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)
\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{5^3.2}{5}\)
\(A=5^2.2\)
\(\Rightarrow A=50\)
\(C=\frac{1124.2247-1123}{1124+1123.2247}\)
\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)
\(\Rightarrow B=50:1=50\)
Vậy B = 50
A = \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{2014.2016}\)
A = \(5.\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)
A = \(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
A = \(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
A = \(\frac{5}{2}.\frac{1007}{2016}=\frac{5035}{4032}\)
\(A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{2014.2016}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\)
\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{2016}\)
\(\Rightarrow\frac{2}{5}A=\frac{1008}{2016}-\frac{1}{2016}\)
\(\Rightarrow\frac{2}{5}A=\frac{1007}{2016}\)
\(\Rightarrow A=\frac{1007}{2016}\div\frac{2}{5}\)
\(\Rightarrow A=\frac{1007}{2016}\times\frac{5}{2}\)
\(\Rightarrow A=\frac{5035}{4032}\)